A New Type of Directional Regularity for Mappings and Applications to Optimization

In this work we introduce and study a new type of directional regularity for mappings, making use of a minimal time function analyzed by the authors in a previous work. The corresponding directional triplet of linear openness, metric regularity, and Aubin property naturally appears, as shown by several examples. Then we devise a new directional Ekeland variational principle, which we use, along with other tools, to obtain necessary and sufficient conditions for directional regularity, formulated in terms of generalized differentiation objects. Finally, we apply the machinery developed before to the study of optimization problems with functional objectives.

[1]  Helmut Gfrerer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics On Directional Metric Subregularity and Second-Order Optimality Conditions for a Class of Nonsmooth Mathematical Programs , 2012 .

[2]  Marius Durea,et al.  On some Fermat rules for set-valued optimization problems , 2011 .

[3]  H. Pühl Convexity and openness with linear rate , 1998 .

[4]  Kung Fu Ng,et al.  Subdifferentials of a minimum time function in Banach spaces , 2006 .

[5]  Nguyen Mau Nam,et al.  Variational Analysis of Directional Minimal Time Functions and Applications to Location Problems , 2013 .

[6]  Boris S. Mordukhovich,et al.  Relative Pareto minimizers for multiobjective problems: existence and optimality conditions , 2009, Math. Program..

[7]  Jonathan M. Borwein,et al.  Viscosity Solutions and Viscosity Subderivatives in Smooth Banach Spaces with Applications to Metric Regularity , 1996 .

[8]  J. Penot Second-Order Conditions for Optimization Problems with Constraints , 1999 .

[9]  Marián Fabian,et al.  Sub differentiability and trustworthiness in the light of a new variational principle of Borwein and Preiss , 1989 .

[10]  Aram V. Arutyunov,et al.  Directional Regularity and Metric Regularity , 2007, SIAM J. Optim..

[11]  Marius Durea,et al.  A new penalization tool in scalar and vector optimizations , 2014 .

[12]  Helmut Gfrerer,et al.  On Lipschitzian Properties of Implicit Multifunctions , 2016, SIAM J. Optim..

[13]  P. Wolenski,et al.  Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces , 2004 .

[14]  Nguyen Mau Nam,et al.  Minimal Time Functions and the Smallest Intersecting Ball Problem with Unbounded Dynamics , 2012, J. Optim. Theory Appl..

[15]  A. Ioffe,et al.  ON SUBDIFFERENTIABILITY SPACES , 1983 .

[16]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[17]  Marius Durea,et al.  Optimality conditions in terms of Bouligand derivatives for Pareto efficiency in set-valued optimization , 2011, Optim. Lett..

[18]  Alexey F. Izmailov,et al.  Directional Stability Theorem and Directional Metric Regularity , 2006, Math. Oper. Res..

[19]  Peter R. Wolenski,et al.  The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space , 2004, J. Glob. Optim..

[20]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[21]  Helmut Gfrerer,et al.  JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics On Directional Metric Regularity, Subregularity and Optimality Conditions for Nonsmooth Mathematical Programs , 2012 .

[22]  J. Aubin Set-valued analysis , 1990 .

[23]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[24]  Marius Durea,et al.  Scalarization of constraints system in some vector optimization problems and applications , 2014, Optim. Lett..

[25]  Nguyen Mau Nam,et al.  Subgradients of Minimal Time Functions Under Minimal Requirements , 2010, 1009.1585.

[26]  Huynh van Ngai,et al.  Directional Metric Regularity of Multifunctions , 2013, Math. Oper. Res..

[27]  Marius Durea,et al.  Minimal time function with respect to a set of directions: basic properties and applications , 2016, Optim. Methods Softw..

[28]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[29]  Yiran He,et al.  Subdifferentials of a minimal time function in normed spaces , 2009 .