Optical coatings on laser crystals for HiPER project

In this contribution we present a technology for deposition of interference coatings for optical components designed to operate as active media in power pulsed lasers. The aim of the technology is to prepare crystals for lasers for the HiPER project (High Power laser Energy Research) which should demonstrate the feasibility of laser driven fusion as a future energy source. Diode pumped solid state lasers (DPSSL) are the most likely option for fusion ignition. The choice of material for the lasers active medium is critical. Some of the most important properties include the ability to be antireflection coated to reduce the energy losses and increase the overall efficiency. This contribution deals with some of the materials considered to be candidates for slabs serving as the active medium of the DPSSLs. We tested Yb:YAG, Yb:CaF2 and Yb:KGW samples. As large amounts of heat need to be dissipated during laser operation, cryogenic cooling is necessary. Appropriate coating materials and techniques need to be chosen. Therefore differences between available coating techniques are investigated in terms of adhesion, enduring of stress resulting from temperature shocks, etc. Coated samples were placed in a specially designed cryogenic apparatus in order to simulate conditions similar to those in real life operation. Optical microscopy and spectrophotometer measurements were used for coating investigation after the conducted experiments.