Spatiotemporal oriented energies for spacetime stereo

This paper presents a novel approach to recovering temporally coherent estimates of 3D structure of a dynamic scene from a sequence of binocular stereo images. The approach is based on matching spatiotemporal orientation distributions between left and right temporal image streams, which encapsulates both local spatial and temporal structure for disparity estimation. By capturing spatial and temporal structure in this unified fashion, both sources of information combine to yield disparity estimates that are naturally temporal coherent, while helping to resolve matches that might be ambiguous when either source is considered alone. Further, by allowing subsets of the orientation measurements to support different disparity estimates, an approach to recovering multilayer disparity from spacetime stereo is realized. The approach has been implemented with real-time performance on commodity GPUs. Empirical evaluation shows that the approach yields qualitatively and quantitatively superior disparity estimates in comparison to various alternative approaches, including the ability to provide accurate multilayer estimates in the presence of (semi)transparent and specular surfaces.

[1]  Jitendra Malik,et al.  Computational framework for determining stereo correspondence from a set of linear spatial filters , 1992, Image Vis. Comput..

[2]  R. Wildes,et al.  Spatiotemporal stereo via spatiotemporal quadric element (stequel) matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[4]  Li Zhang,et al.  Spacetime stereo: shape recovery for dynamic scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[5]  Richard Szeliski,et al.  Stereo matching with linear superposition of layers , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Yo-Sung Ho,et al.  Temporally Consistent Depth Map Estimation Using Motion Estimation for 3 DTV , 2009 .

[7]  Szymon Rusinkiewicz,et al.  Spacetime stereo: a unifying framework for depth from triangulation , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Richard P. Wildes,et al.  Visual Tracking Using a Pixelwise Spatiotemporal Oriented Energy Representation , 2010, ECCV.

[9]  Olivier D. Faugeras,et al.  Variational stereovision and 3D scene flow estimation with statistical similarity measures , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[10]  Luc Van Gool,et al.  Motion - Stereo Integration for Depth Estimation , 2002, ECCV.

[11]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[12]  Shmuel Peleg,et al.  A Three-Frame Algorithm for Estimating Two-Component Image Motion , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Richard P. Wildes,et al.  Qualitative Spatiotemporal Analysis Using an Oriented Energy Representation , 2000, ECCV.

[14]  Michael Isard,et al.  Estimating disparity and occlusions in stereo video sequences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[15]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Masahiko Shizawa,et al.  Direct estimation of multiple disparities for transparent multiple surfaces in binocular stereo , 1993, 1993 (4th) International Conference on Computer Vision.

[17]  Richard P. Wildes,et al.  Dynamic texture recognition based on distributions of spacetime oriented structure , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  James L. Crowley,et al.  A Probabilistic Sensor for the Perception and Recognition of Activities , 2000, ECCV.

[19]  Changming Sun,et al.  An energy minimisation approach to stereo-temporal dense reconstruction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[20]  M. Gelautz,et al.  Temporally consistent disparity maps from uncalibrated stereo videos , 2009, 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis.

[21]  Minglun Gong Enforcing Temporal Consistency in Real-Time Stereo Estimation , 2006, ECCV.

[22]  Trevor Darrell,et al.  Using Multiple-Hypothesis Disparity Maps and Image Velocity for 3-D Motion Estimation , 2004, International Journal of Computer Vision.

[23]  Neil A. Dodgson,et al.  Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral Grid , 2010, ECCV.

[24]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[25]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Marc Pollefeys,et al.  Temporally Consistent Reconstruction from Multiple Video Streams Using Enhanced Belief Propagation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[27]  Jitendra Malik,et al.  A Computational Framework for Determining Stereo Correspondence from a Set of Linear Spatial Filters , 1991, ECCV.

[28]  Richard P. Wildes,et al.  Coarse-to-fine stereo vision with accurate 3D boundaries , 2010, Image Vis. Comput..

[29]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[30]  Michael Isard,et al.  Dense Motion and Disparity Estimation Via Loopy Belief Propagation , 2006, ACCV.

[31]  Joachim Weickert,et al.  Joint Estimation of Motion, Structure and Geometry from Stereo Sequences , 2010, ECCV.