Alkali-helium exciplex formation on the surface of helium nanodroplets. II. A time-resolved study

We have monitored the time evolution of the fluorescence of K*He exciplexes formed on the surface of helium nanodroplets using reversed time-correlated single photon counting. In modeling the present data and that from our previous work on Na*He, we find that partial spin–orbit coupling as well as the extraction energy of helium atoms from the droplet contribute to the observed dynamics of both K*He and Na*He formation, which differ considerably after either D1(n 2P1/2←n 2S1/2) or D2(n 2P3/2←n 2S1/2) excitation for both K(n=4) and Na(n=3). Our quantitative prediction of the Na*He formation dynamics coupled with preliminary data on and modeling of the formation dynamics of K*He allow for extrapolation to the case of Rb*He. Spin–orbit considerations combined with a simple model of helium atom extraction from the matrix reveal the following predicted trend: as the choice of the alkali guest atom is moved down the periodic table, alkali atom–He exciplex formation along the 1 2Π3/2 surface occurs faster while ...

[1]  I. Hertel,et al.  COHERENCE AND RELAXATION IN POTASSIUM-DOPED HELIUM DROPLETS STUDIED BY FEMTOSECOND PUMP-PROBE SPECTROSCOPY , 1999 .

[2]  A. Mosk,et al.  Optical excitation of atomic hydrogen bound to the surface of liquid helium , 1998 .

[3]  T. Hijmans,et al.  Optical Observation of Atomic Hydrogen on the Surface of Liquid Helium , 1998 .

[4]  Y. Kuznetsov,et al.  Electron-stimulated desorption of sodium atoms from an oxidized molybdenum surface , 1998 .

[5]  Z. Jakubek,et al.  Ab initio studies of AgHe exciplex , 1997 .

[6]  G. Scoles,et al.  Spin–orbit effects in the formation of the Na–He excimer on the surface of He clusters , 1997 .

[7]  G. Scoles,et al.  Spectroscopy of alkali atoms (Li, Na, K) attached to large helium clusters , 1996 .

[8]  Nakamura,et al.  Formation of AgHe2 exciplex in liquid helium. , 1996, Physical review letters.

[9]  Gunnar Radons,et al.  MATHCAD PLUS 6.0 , 1996 .

[10]  J. Dupont-roc Excited p-states of alkali atoms in liquid helium , 1995 .

[11]  M. W. Cole,et al.  Alkali dimers on the surface of liquid helium , 1995 .

[12]  T. Hänsch,et al.  Pressure shift of atomic resonance lines in liquid and solid helium , 1995 .

[13]  Hartmann,et al.  Rotationally Resolved Spectroscopy of SF6 in Liquid Helium Clusters: A Molecular Probe of Cluster Temperature. , 1995, Physical review letters.

[14]  W. Meyer,et al.  Dynamic multipole polarizabilities and long range interaction coefficients for the systems H, Li, Na, K, He, H−, H2, Li2, Na2, and K2 , 1993 .

[15]  K. B. Whaley,et al.  Monte Carlo study of impurities in quantum clusters: H2 4HeN, N=2–19 , 1992 .

[16]  S. Cova,et al.  Optimum amplification of microchannel‐plate photomultiplier pulses for picosecond photon timing , 1991 .

[17]  R. L. Roy,et al.  Monte Carlo simulations of structural properties and infrared spectra of SF6–(Ar)n clusters , 1988 .

[18]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[19]  P. McClintock An introduction to liquid helium (2nd edition). , 1987 .

[20]  Boris M. Smirnov,et al.  Reference Data on Atoms, Molecules, and Ions , 1985 .

[21]  A. Ikushima,et al.  Surface tension of liquid4He. Surface energy of the Bose-Einstein condensate , 1985 .

[22]  D. O'connor,et al.  Time-Correlated Single Photon Counting , 1984 .

[23]  R. Donnelly,et al.  The calculated thermodynamic properties of superfluid helium‐4 , 1977 .

[24]  B. Schneider,et al.  Ground and excited states of Ne2 and Ne2+. I. Potential curves with and without spin‐orbit coupling , 1974 .

[25]  D. S. Betts,et al.  An introduction to liquid helium , 1970 .

[26]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .