Hidden chaotic attractors in a class of two-dimensional maps

This paper studies the hidden dynamics of a class of two-dimensional maps inspired by the Hénon map. A special consideration is made to the existence of fixed points and their stabilities in these maps. Our concern focuses on three typical scenarios which may generate hidden dynamics, i.e., no fixed point, single fixed point, and two fixed points. A computer search program is employed to explore the strange hidden attractors in the map. Our findings show that the basins of some hidden attractors are tiny, so the standard computational procedure for localization is unavailable. The schematic exploring method proposed in this paper could be generalized for investigating hidden dynamics of high-dimensional maps.

[1]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[2]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[3]  Awadhesh Prasad,et al.  Existence of Perpetual Points in Nonlinear Dynamical Systems and Its Applications , 2014, Int. J. Bifurc. Chaos.

[4]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[5]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[6]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[7]  Julien Clinton Sprott,et al.  Coexisting Hidden Attractors in a 4-D Simplified Lorenz System , 2014, Int. J. Bifurc. Chaos.

[8]  Runtong Chu,et al.  Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice , 2014 .

[9]  Viet-Thanh Pham,et al.  The Relationship Between Chaotic Maps and Some Chaotic Systems with Hidden Attractors , 2016, Int. J. Bifurc. Chaos.

[10]  Guanrong Chen,et al.  Generating Multiscroll Chaotic Attractors: Theories, Methods and Applications , 2006 .

[11]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[12]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[13]  J. Sprott Strange Attractors: Creating Patterns in Chaos , 1993 .

[14]  G. Leonov,et al.  A short survey on Lyapunov dimension for finite dimensional dynamical systems in Euclidean space , 2015, 1510.03835.

[15]  M. Hénon A two-dimensional mapping with a strange attractor , 1976 .

[16]  Alfredo Medio,et al.  Nonlinear Dynamics: A Primer , 2001 .

[17]  Yi Jie,et al.  Research on the Multi-Scroll Chaos Generation Based on Jerk Mode , 2012 .

[18]  Viet-Thanh Pham,et al.  Multiscroll Chaotic Sea Obtained from a Simple 3D System Without Equilibrium , 2016, Int. J. Bifurc. Chaos.

[19]  Julien Clinton Sprott,et al.  Coexistence of Point, periodic and Strange attractors , 2013, Int. J. Bifurc. Chaos.

[20]  Julien Clinton Sprott,et al.  2-D Quadratic Maps and 3-D Ode Systems: A Rigorous Approach , 2010 .

[21]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[22]  Manuel de la Sen,et al.  Second-order counterexamples to the discrete-time Kalman conjecture , 2015, Autom..

[23]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[24]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[25]  Zhouchao Wei,et al.  Hidden Hyperchaotic Attractors in a Modified Lorenz-Stenflo System with Only One Stable Equilibrium , 2014, Int. J. Bifurc. Chaos.

[26]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[27]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[28]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[29]  G. A. Leonov,et al.  Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations , 2014, 1410.2016.

[30]  Awadhesh Prasad,et al.  Perpetual points and hidden attractors in dynamical systems , 2015 .

[31]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[32]  Przemyslaw Perlikowski,et al.  Multistability and Rare attractors in van der Pol-Duffing oscillator , 2011, Int. J. Bifurc. Chaos.

[33]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[34]  Erik Mosekilde,et al.  Multistability and hidden attractors in a multilevel DC/DC converter , 2015, Math. Comput. Simul..

[35]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[36]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[37]  G. Leonov,et al.  On stability by the first approximation for discrete systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..