National direct-drive program on OMEGA and the National Ignition Facility
暂无分享,去创建一个
P. B. Radha | C. J. Forrest | Robert L. McCrory | Riccardo Betti | F. J. Marshall | Christian Stoeckl | J. F. Myatt | D. H. Edgell | Valeri N. Goncharov | D. H. Froula | T. R. Boehly | Jacques A. Delettrez | Ronald M. Epstein | V. Yu. Glebov | D. R. Harding | T. C. Sangster | W. Seka | Susan Regan | M. Gatu-Johnson | Wolfgang Theobald | D. T. Michel | A. Shvydky | Igor V. Igumenshchev | R. Betti | T. Boehly | V. Goncharov | D. Harding | R. Mccrory | J. Myatt | W. Theobald | J. Delettrez | W. Seka | C. Stoeckl | S. Regan | D. Froula | F. Marshall | V. Glebov | I. Igumenshchev | R. Epstein | D. Edgell | S. X. Hu | A. Shvydky | E. Campbell | E. M. Campbell | C. Forrest | M. Gatu-Johnson | R. Epstein | R. Betti | V. Yu Glebov | P. Radha | T. Sangster | S. Hu
[1] V. Goncharov,et al. Cryogenic Deuterium and Deuterium-Tritium Direct–Drive Implosions on Omega , 2013 .
[2] B. Militzer,et al. Strong coupling and degeneracy effects in inertial confinement fusion implosions. , 2010, Physical review letters.
[3] Denis G. Colombant,et al. Effects of Thin High-z Layers on the Hydrodynamics of Laser-Accelerated Plastic Targets , 2002 .
[4] V N Goncharov,et al. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants. , 2012, Physical review letters.
[5] J. A. Marozas,et al. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa) , 2014 .
[6] P. B. Radha,et al. Measurements of the ablation-front trajectory and low-mode nonuniformity in direct-drive implosions using x-ray self-emission shadowgraphy , 2015 .
[7] P. B. Radha,et al. Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. , 2010, Physical review letters.
[8] R. S. Craxton,et al. Time-resolved absorption in cryogenic and room-temperature direct-drive implosionsa) , 2008 .
[9] T. C. Sangster,et al. Laser-beam zooming to mitigate crossed-beam energy losses in direct-drive implosions. , 2013, Physical review letters.
[10] D. T. Michel,et al. High Power Laser Science and Engineering , 2015 .
[11] Karen S. Anderson,et al. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement , 2010 .
[12] Riccardo Betti,et al. Diagnosing fuel ρR and ρR asymmetries in cryogenic deuterium-tritium implosions using charged-particle spectrometry at OMEGA , 2009 .
[13] L. Perkins,et al. Shock ignition of thermonuclear fuel with high areal density. , 2006, Physical review letters.
[14] V N Goncharov,et al. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited). , 2012, The Review of scientific instruments.
[15] T. C. Sangster,et al. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited). , 2014, The Review of scientific instruments.
[16] Thomas J. Murphy,et al. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra , 2014 .
[17] J. F. Myatt,et al. Modeling Crossed-Beam Energy Transfer in Implosion Experiments on OMEGA , 2009 .
[18] V. Goncharov,et al. Performance of Direct-Drive Cryogenic Targets on OMEGA , 2007 .
[19] J. Meyer-ter-Vehn,et al. The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .
[20] S. Skupsky,et al. Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA , 2016 .
[21] Jonathan D. Zuegel,et al. Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA , 2013 .
[22] C Sorce,et al. Shell trajectory measurements from direct-drive implosion experiments. , 2012, The Review of scientific instruments.
[23] J. Lawson. SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .
[24] John Kelly,et al. Crossed-beam energy transfer in direct-drive implosions , 2011 .
[25] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[26] V N Goncharov,et al. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA. , 2016, Physical review letters.
[27] S. Skupsky,et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser , 1999 .
[28] D. A. Callahan,et al. Fuel gain exceeding unity in an inertially confined fusion implosion , 2014, Nature.
[29] P. B. Radha,et al. Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA , 2016 .
[30] Samuel A. Letzring,et al. Initial performance results of the OMEGA laser system , 1997 .
[31] Ying Lin,et al. Phase conversion of lasers with low-loss distributed phase plates , 1993, Photonics West - Lasers and Applications in Science and Engineering.
[32] T. C. Sangster,et al. Effects of local defect growth in direct-drive cryogenic implosions on OMEGA , 2013 .
[33] Epstein,et al. Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.
[34] L. M. Barker,et al. Laser interferometer for measuring high velocities of any reflecting surface , 1972 .
[35] T. C. Sangster,et al. Ten-inch manipulator-based neutron temporal diagnostic for cryogenic experiments on OMEGA , 2003 .
[36] R. Betti,et al. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion , 2005 .
[37] V N Goncharov,et al. Core conditions for alpha heating attained in direct-drive inertial confinement fusion. , 2016, Physical review. E.
[38] S. Skupsky,et al. Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution , 2006 .
[39] R. Betti,et al. Bubble acceleration in the ablative Rayleigh-Taylor instability. , 2006, Physical review letters.
[40] D. T. Michel,et al. Systematic Fuel Cavity Asymmetries in Directly Driven ICF Implosions , 2016 .
[41] D. Clark,et al. A survey of pulse shape options for a revised plastic ablator ignition design , 2014 .
[42] V N Goncharov,et al. First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[43] S. Skupsky,et al. Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket , 2003 .
[44] P. B. Radha,et al. Improving cryogenic deuterium–tritium implosion performance on OMEGAa) , 2013 .
[45] Jonathan D. Zuegel,et al. Hard x-ray detectors for OMEGA and NIF , 2001 .
[46] Stefano Atzeni,et al. The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter , 2004 .
[47] Denis G. Colombant,et al. The Nike KrF laser facility: Performance and initial target experiments , 1996 .
[48] Samuel A. Letzring,et al. Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .
[49] P. Lovoi,et al. Laser paint stripping offers control and flexibility , 1994 .
[50] David Neely,et al. Laser-plasma interactions and applications , 2013 .