Clock Multiplication Techniques Using Digital Multiplying Delay-Locked Loops

A highly-digital clock multiplication architecture that achieves excellent jitter and mitigates supply noise is presented. The proposed architecture utilizes a calibration-free digital multiplying delay-locked loop (MDLL) to decouple the tradeoff between time-to-digital converter (TDC) resolution and oscillator phase noise in digital phase-locked loops (PLLs). Both reduction in jitter accumulation down to sub-picosecond levels and improved supply noise rejection over conventional PLL architectures is demonstrated with low power consumption. A digital PLL that employs a 1-bit TDC and a low power regulator that seeks to improve supply noise immunity without increasing loop delay is presented and used to compare with the proposed MDLL. The prototype MDLL and DPLL chips are fabricated in a 0.13 μm CMOS technology and operate from a nominal 1.1 V supply. The proposed MDLL achieves an integrated jitter of 400 fs rms at 1.5 GHz output frequency from a 375 MHz reference clock, while consuming 890 μ W. The worst-case supply noise sensitivity of the MDLL is 20 fspp/mVpp which translates to a jitter degradation of 3.8 ps in the presence of 200 mV supply noise. The proposed clock multipliers occupy active die areas of 0.25 mm2 and 0.2 mm2 for the MDLL and DPLL, respectively.

[1]  Nicola Da Dalt A design-oriented study of the nonlinear dynamics of digital bang-bang PLLs , 2005, IEEE Trans. Circuits Syst. I Regul. Pap..

[2]  S. Gondi,et al.  Low-Power Supply-Regulation Techniques for Ring Oscillators in Phase-Locked Loops Using a Split-Tuned Architecture , 2009, IEEE Journal of Solid-State Circuits.

[3]  Masum Hossain,et al.  A 6.4/3.2/1.6 Gb/s low power interface with all digital clock multiplier for on-the-fly rate switching , 2012, Proceedings of the IEEE 2012 Custom Integrated Circuits Conference.

[4]  P. Gregorius,et al.  A compact triple-band low-jitter digital LC PLL with programmable coil in 130-nm CMOS , 2005, IEEE Journal of Solid-State Circuits.

[5]  Amr Elshazly,et al.  A 1.5GHz 890μW digital MDLL with 400fsrms integrated jitter, −55.6dBc reference spur and 20fs/mV supply-noise sensitivity using 1b TDC , 2012, 2012 IEEE International Solid-State Circuits Conference.

[6]  Matthew Z. Straayer,et al.  A Low-Noise Wide-BW 3.6-GHz Digital $\Delta\Sigma$ Fractional-N Frequency Synthesizer With a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation , 2008, IEEE Journal of Solid-State Circuits.

[7]  J.A. Tierno,et al.  A Wide Power Supply Range, Wide Tuning Range, All Static CMOS All Digital PLL in 65 nm SOI , 2008, IEEE Journal of Solid-State Circuits.

[8]  William J. Dally,et al.  A low-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated digital chips , 2002, IEEE J. Solid State Circuits.

[9]  K. Muhammad,et al.  All-digital PLL and transmitter for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[10]  Ron Ho,et al.  A 4.6GHz MDLL with −46dBc reference spur and aperture position tuning , 2011, 2011 IEEE International Solid-State Circuits Conference.

[11]  John Crossley,et al.  An energy-efficient ring-oscillator digital PLL , 2010, IEEE Custom Integrated Circuits Conference 2010.

[12]  Mark Horowitz,et al.  A 0.4-4-Gb/s CMOS quad transceiver cell using on-chip regulated dual-loop PLLs , 2003 .

[13]  Jin-Sheng Wang,et al.  A PVT tolerant 0.18MHz to 600MHz self-calibrated digital PLL in 90nm CMOS process , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[14]  Matthew Z. Straayer,et al.  A Low-Noise, Wide-BW 3.6GHz Digital ΔΣ Fractional-N Frequency Synthesizer with a Noise-Shaping Time-to-Digital Converter and Quantization Noise Cancellation , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[15]  Gu-Yeon Wei,et al.  A 500MHz MP/DLL clock generator for a 5Gb/s backplane transceiver in 0.25/spl mu/m CMOS , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[16]  E. Alon,et al.  Replica compensated linear regulators for supply-regulated phase-locked loops , 2006, IEEE Journal of Solid-State Circuits.

[17]  John A. McNeill Jitter in ring oscillators , 1997 .

[18]  M. Horowitz,et al.  Adaptive bandwidth DLLs and PLLs using regulated supply CMOS buffers , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[19]  Wei-Zen Chen,et al.  A 7.1 mW, 10 GHz All Digital Frequency Synthesizer With Dynamically Reconfigured Digital Loop Filter in 90 nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[20]  Wei-Zen Chen,et al.  A 7.1mW 10GHz all-digital frequency synthesizer with dynamically reconfigurable digital loop filter in 90nm CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[21]  V.G. Oklobdzija,et al.  Improved sense-amplifier-based flip-flop: design and measurements , 2000, IEEE Journal of Solid-State Circuits.

[22]  Roberto Nonis,et al.  A 1.4psrms-period-jitter TDC-less fractional-N digital PLL with digitally controlled ring oscillator in 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[23]  Chulwoo Kim,et al.  A 10MHz to 315MHz cascaded hybrid PLL with piecewise linear calibrated TDC , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[24]  Sheng Ye,et al.  A multiple-crystal interface PLL with VCO realignment to reduce phase noise , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[25]  Pavan Kumar Hanumolu,et al.  Digitally-Enhanced Phase-Locking Circuits , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[26]  Amr Elshazly,et al.  A 1.5GHz 1.35mW −112dBc/Hz in-band noise digital phase-locked loop with 50fs/mV supply-noise sensitivity , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[27]  B.M. Helal,et al.  A Highly Digital MDLL-Based Clock Multiplier That Leverages a Self-Scrambling Time-to-Digital Converter to Achieve Subpicosecond Jitter Performance , 2008, IEEE Journal of Solid-State Circuits.