Wideband Transmitarrays Based on Polarization- Rotating Miniaturized-Element Frequency Selective Surfaces

We present a new low-profile, wideband, transmitarray design based on polarization-rotating (PR), miniaturized-element, frequency-selective surfaces (MEFSSs). These MEFSS unit cells rotate the polarization of the transmitted wave by 90° either in the counterclockwise or in the clockwise direction. Each PR element consists of three metal layers separated by two dielectric substrates. The constituent metallic layers comprise metallic strips with specific alignments to twist the polarization of the transmitted electromagnetic wave by ±90°. We used the two rotation directions to achieve a 0°/180° phase difference in the transmission mode to achieve a 1 bit phase shifter. We also show that variations in the unit cell dimensions can be combined with polarization rotation to create an additional 90° phase shifts, which can be combined with the PR phase shift mechanism to achieve a 2 bit phase shifter. We designed, fabricated, and experimentally characterized two illustrative transmitarray prototypes with 1 and 2 bit phase-correction patterns. The measured results agree well with the simulation predictions and demonstrate wideband operation for both arrays. The measured 3 dB gain bandwidth and maximum gain are 33.4% and 24.5 dBi, respectively, for the 1 bit prototype, and 24.1% and 27.2 dBi, respectively, for the 2 bit prototype.

[1]  Lin Yang,et al.  A Double-Layer Wideband Transmitarray Antenna Using Two Degrees of Freedom Elements Around 20 GHz , 2019, IEEE Transactions on Antennas and Propagation.

[2]  Ke Li,et al.  A Novel Ultrawideband Transmitarray Design Using Tightly Coupled Dipole Elements , 2019, IEEE Transactions on Antennas and Propagation.

[3]  John H. Booske,et al.  Wideband Reflectarray and Transmitarray Designs Using Polarization Rotating Unit Cells , 2018, 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM).

[4]  Shiwen Yang,et al.  Octave Bandwidth Transmitarrays With a Flat Gain , 2018, IEEE Transactions on Antennas and Propagation.

[5]  Shi Lin Liu,et al.  $W$ -Band Low-Profile Transmitarray Antenna Using Different Types of FSS Units , 2018, IEEE Transactions on Antennas and Propagation.

[6]  Maokun Li,et al.  Dual-band dual-polarized transmitarray for satellite communications , 2018, 2018 IEEE MTT-S International Wireless Symposium (IWS).

[7]  Payam Nayeri,et al.  Analysis and Design of Transmitarray Antennas , 2017, Analysis and Design of Transmitarray Antennas.

[8]  Hamza Kaouach,et al.  High-efficiency wideband transmit-array antenna with linear polarization in Q-band , 2016 .

[9]  Laurent Dussopt,et al.  Radiation Pattern Synthesis for Monopulse Radar Applications With a Reconfigurable Transmitarray Antenna , 2016, IEEE Transactions on Antennas and Propagation.

[10]  L. Dussopt,et al.  A switched-beam linearly-polarized transmitarray antenna for V-band backhaul applications , 2016, 2016 10th European Conference on Antennas and Propagation (EuCAP).

[11]  Laurent Dussopt,et al.  Design of Wideband Dual Linearly Polarized Transmitarray Antennas , 2016, IEEE Transactions on Antennas and Propagation.

[12]  S. H. Zainud-Deen,et al.  Linearly/circularly polarized multi-beam transmitarray antennas for wireless terahertz communications , 2016, 2016 33rd National Radio Science Conference (NRSC).

[13]  Xianming Qing,et al.  77-GHz Dual-Layer Transmit-Array for Automotive Radar Applications , 2015, IEEE Transactions on Antennas and Propagation.

[14]  Wei Hong,et al.  Integration design of high efficiency reflectarray and transmitarray for millimeter wave wireless communications , 2014, 2014 IEEE International Conference on Communiction Problem-solving.

[15]  Seyed Mohamad Amin Momeni Hasan Abadi,et al.  Design of Wideband, FSS-Based MultiBeam Antennas Using the Effective Medium Approach , 2014, IEEE Transactions on Antennas and Propagation.

[16]  Fan Yang,et al.  High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements , 2014, IEEE Antennas and Wireless Propagation Letters.

[17]  Nader Behdad,et al.  Wideband True-Time-Delay Microwave Lenses Based on Metallo-Dielectric and All-Dielectric Lowpass Frequency Selective Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[18]  Meng Li,et al.  Broadband True-Time-Delay Microwave Lenses Based on Miniaturized Element Frequency Selective Surfaces , 2013, IEEE Transactions on Antennas and Propagation.

[19]  N. Behdad,et al.  Wideband Planar Microwave Lenses Using Sub-Wavelength Spatial Phase Shifters , 2011, IEEE Transactions on Antennas and Propagation.

[20]  T. Koleck,et al.  Wideband Low-Loss Linear and Circular Polarization Transmit-Arrays in V-Band , 2011, IEEE Transactions on Antennas and Propagation.

[21]  N. Behdad,et al.  A Generalized Method for Synthesizing Low-Profile, Band-Pass Frequency Selective Surfaces With Non-Resonant Constituting Elements , 2010, IEEE Transactions on Antennas and Propagation.

[22]  Derek A. McNamara,et al.  Thin microwave phase-shifting surface lens antenna made of square elements , 2010 .

[23]  M. R. Chaharmir,et al.  A Wideband Transmitarray Using Dual-Resonant Double Square Rings , 2010, IEEE Transactions on Antennas and Propagation.

[24]  N. Behdad,et al.  A New Technique for Design of Low-Profile, Second-Order, Bandpass Frequency Selective Surfaces , 2009, IEEE Transactions on Antennas and Propagation.

[25]  N. Behdad,et al.  Miniaturized-element frequency selective surfaces (MEFSS) using sub-wavelength periodic structures , 2008, 2008 IEEE Radio and Wireless Symposium.

[26]  Gabriel M. Rebeiz,et al.  Low-loss bandpass antenna-filter-antenna arrays for applications in quasi-optical systems , 2005, 2005 European Microwave Conference.

[27]  D. Pozar Flat lens antenna concept using aperture coupled microstrip patches , 1996 .