An Ando–Choi–Effros lifting theorem respecting subspaces
暂无分享,去创建一个
[1] W. Lusky. A note on Banach spaces containing c0 or C , 1985 .
[2] G. Godefroy. Extensions of Lipschitz functions and Grothendieck ’ s bounded approximation property , 2016 .
[3] W. Werner,et al. M-Ideals in Banach Spaces and Banach Algebras , 1993 .
[4] G. J. O. Jameson,et al. ABSOLUTELY SUMMING OPERATORS (Cambridge Studies in Advanced Mathematics 43) By Joe Diestel, Hans Jarchow and Andrew Tonge: 474 pp., £40.00 (US$59.95), ISBN 0 521 43168 9 (Cambridge University Press, 1995). , 1997 .
[5] J. Lindenstrauss. Extension of Compact Operators , 1964 .
[6] Principle of local reflexivity respecting subspaces , 2013, 1310.6232.
[7] A. Szankowski. A banach lattice without the approximation property , 1976 .
[8] W. Johnson,et al. Separable lifting property and extensions of local reflexivity , 2001 .
[9] T. Figiel,et al. Some approximation properties of Banach spaces and Banach lattices , 2011 .
[10] The uniform structure of Banach spaces , 2012 .
[11] G. Godefroy,et al. Spaces of Lipschitz and Hölder functions and their applications , 2016 .
[12] E. Oja,et al. Some duality results on bounded approximation properties of pairs , 2013 .
[13] E. Michael,et al. A linear extension theorem , 1967 .
[14] G. Godefroy,et al. The non-linear geometry of Banach spaces after Nigel Kalton , 2012, 1207.2958.
[15] G. Godefroy,et al. Free Banach spaces and the approximation properties , 2012, 1201.0847.
[16] G. Godefroy,et al. Lipschitz-free Banach spaces , 2003 .
[17] Laetitia Borel-Mathurin. Approximation properties and non-linear geometry of Banach spaces , 2012 .
[18] R. Ryan. Introduction to Tensor Products of Banach Spaces , 2002 .
[19] N. Kalton. Spaces of Lipscitz and Hlder functions and their applications , 2004 .
[20] R. Arens,et al. On embedding uniform and topological spaces. , 1956 .
[21] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[22] Ells,et al. ON EMBEDDING UNIFORM AND TOPOLOGICAL SPACES , 2012 .
[23] The Equation L(E, X ∗ ∗ = L(E, X) ∗ ∗ and the Principle of Local Reflexivity , 1973 .
[24] L. Ambrosio,et al. Linear extension operators between spaces of Lipschitz maps and optimal transport , 2016, Journal für die reine und angewandte Mathematik (Crelles Journal).