An Ando–Choi–Effros lifting theorem respecting subspaces

We prove a version of the Ando-Choi-Effros lifting theorem respecting subspaces, which in turn relies on Oja's principle of local reflexivity respecting subspaces. To achieve this, we first develop a theory of pairs of $M$-ideals. As a first consequence we get a version respecting subspaces of the Michael-Pe{\l}czy\'nski extension theorem. Other applications are related to linear and Lipschitz bounded approximation properties for a pair consisting of a Banach space and a subspace. We show that in the separable case, the BAP for such a pair is equivalent to the simultaneous splitting of an associated pair of short exact sequences given by a construction of Lusky. We define a Lipschitz version of the BAP for pairs, and study its relationship to the (linear) BAP for pairs. The two properties are not equivalent in general, but they are when the pair has an additional Lipschitz-lifting property in the style of Godefroy and Kalton. We also characterize, in the separable case, those pairs of a metric space and a subset whose corresponding pair of Lipschitz-free spaces has the BAP.

[1]  W. Lusky A note on Banach spaces containing c0 or C , 1985 .

[2]  G. Godefroy Extensions of Lipschitz functions and Grothendieck ’ s bounded approximation property , 2016 .

[3]  W. Werner,et al.  M-Ideals in Banach Spaces and Banach Algebras , 1993 .

[4]  G. J. O. Jameson,et al.  ABSOLUTELY SUMMING OPERATORS (Cambridge Studies in Advanced Mathematics 43) By Joe Diestel, Hans Jarchow and Andrew Tonge: 474 pp., £40.00 (US$59.95), ISBN 0 521 43168 9 (Cambridge University Press, 1995). , 1997 .

[5]  J. Lindenstrauss Extension of Compact Operators , 1964 .

[6]  Principle of local reflexivity respecting subspaces , 2013, 1310.6232.

[7]  A. Szankowski A banach lattice without the approximation property , 1976 .

[8]  W. Johnson,et al.  Separable lifting property and extensions of local reflexivity , 2001 .

[9]  T. Figiel,et al.  Some approximation properties of Banach spaces and Banach lattices , 2011 .

[10]  The uniform structure of Banach spaces , 2012 .

[11]  G. Godefroy,et al.  Spaces of Lipschitz and Hölder functions and their applications , 2016 .

[12]  E. Oja,et al.  Some duality results on bounded approximation properties of pairs , 2013 .

[13]  E. Michael,et al.  A linear extension theorem , 1967 .

[14]  G. Godefroy,et al.  The non-linear geometry of Banach spaces after Nigel Kalton , 2012, 1207.2958.

[15]  G. Godefroy,et al.  Free Banach spaces and the approximation properties , 2012, 1201.0847.

[16]  G. Godefroy,et al.  Lipschitz-free Banach spaces , 2003 .

[17]  Laetitia Borel-Mathurin Approximation properties and non-linear geometry of Banach spaces , 2012 .

[18]  R. Ryan Introduction to Tensor Products of Banach Spaces , 2002 .

[19]  N. Kalton Spaces of Lipscitz and Hlder functions and their applications , 2004 .

[20]  R. Arens,et al.  On embedding uniform and topological spaces. , 1956 .

[21]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[22]  Ells,et al.  ON EMBEDDING UNIFORM AND TOPOLOGICAL SPACES , 2012 .

[23]  The Equation L(E, X ∗ ∗ = L(E, X) ∗ ∗ and the Principle of Local Reflexivity , 1973 .

[24]  L. Ambrosio,et al.  Linear extension operators between spaces of Lipschitz maps and optimal transport , 2016, Journal für die reine und angewandte Mathematik (Crelles Journal).