Tight bounds on Rician-type error probabilities and some applications

Consider the classic problem of evaluating the probability that one Rician random variable exceeds another, possibly correlated, Rician random variable. This probability is given by Stein (1964) in terms of the Marcum's Q-function, which requires numerical integration on the computer for its evaluation. To facilitate application in many digital communication problems, we derive here tight upper and lower bounds on this probability. The bounds are motivated by a classic result in communication theory, namely, the error probability performance of binary orthogonal signaling over the Gaussian channel with unknown carrier phase. Various applications of the bounds are reported, including the evaluation of the bit error probabilities of MDPSK and MPSK with differential detection and generalized differential detection, respectively. The bounds prove to be tight in all cases. Further applications will be reported in the future. >