VegMV – the vegetation database of Mecklenburg-Vorpommern

We review VegMV, the phytosociological database of Mecklenburg-Vorpommern (NE Germany) with electronically stored vegetation releves (GIVD ID EU-DE-001). The database was established in 1994 and is now hosted by the Institute of Botany and Landscape Ecology, University of Greifswald, Germany (http://www.botanik.uni-greifswald.de/VegMV). On 27 October 2011, the database contained 53,842 releves, mostly from the federal state of Mecklenburg-Vorpommern, collected by approximately 320 authors between 1928 and 2010. Some 28% of the releves were taken from published papers or monographs, 42% from theses and 30% from various unpublished reports and “field books”. A wide variety of habitats occurring in Mecklenburg-Vorpommern are represented, but territorial coverage by releves is uneven, with lower coverage of less attractive and poorly accessible areas. The largest numbers of releves are from managed grasslands (Molinio-Arrhenatheretea), arable land (Stellarietea mediae), and eutrophic reed communities (Phragmito-Magno-Caricetea). We quantify and discuss possible bias in the data, such as preferential selection of sampling sites (habitat and small-scale preferences), taxonomic inconsistencies, spatial agglomeration, and missing values for some data elements. We present a brief introduction to the consistent phytosociological vegetation classification developed using the VegMV data. Further applications of the data and the conditions for their use are reported.

[1]  M. Chytrý,et al.  Czech National Phytosociological Database , 2012 .

[2]  H. Bruelheide,et al.  German Vegetation Reference Database (GVRD) , 2012 .

[3]  Jörg Ewald,et al.  VegetWeb – the national online-repository of vegetation plots from Germany , 2012 .

[4]  Falko Glöckler,et al.  Vegetation databases for the 21st century , 2012 .

[5]  J. Oldeland,et al.  The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science , 2011 .

[6]  M. Chytrý,et al.  Bias in vegetation databases? A comparison of stratified-random and preferential sampling. , 2011 .

[7]  S. Zerbe,et al.  Ecological preferences of alien plant species in North-Eastern Germany , 2011, Biological Invasions.

[8]  F. Jansen,et al.  Die mitteleuropäischen Datenbanken im Global Index ofVegetation-Plot Databases (GIVD) , 2011 .

[9]  W. Willner,et al.  Cross-Scale Analysis of the Region Effect on Vascular Plant Species Diversity in Southern and Northern European Mountain Ranges , 2010, PloS one.

[10]  Florian Jansen,et al.  Plant names in vegetation databases – a neglected source of bias , 2010 .

[11]  F. Archaux Could we obtain better estimates of plot species richness from multiple‐observer plant censuses? , 2009 .

[12]  J. Cavender-Bares,et al.  The merging of community ecology and phylogenetic biology. , 2009, Ecology letters.

[13]  J. Schellberg,et al.  Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany. , 2009 .

[14]  Petr Pyšek,et al.  European map of alien plant invasions based on the quantitative assessment across habitats , 2009 .

[15]  T. Heinken,et al.  Zur Abgrenzung und Situation des FFH-Lebensraumtyps "Mitteleuropäische Flechten-Kiefernwälder" (91TO) in Deutschland , 2009 .

[16]  M. Isermann,et al.  Classification and habitat characteristics of plant communities invaded by the non-native Rosa rugosa Thunb. in NW Europe. , 2008 .

[17]  F. Jansen,et al.  GermanSL – Eine universelle taxonomische Referenzliste für Vegetationsdatenbanken in Deutschland , 2008 .

[18]  J. S. Rodwell,et al.  Vegetation-plot data and databases in Europe: an overview , 2008 .

[19]  D. Renison,et al.  Filtering processes in the assembly of plant communities: Are species presence and abundance driven by the same traits? , 2007 .

[20]  Jason D. Fridley,et al.  Co‐occurrence based assessment of habitat generalists and specialists: a new approach for the measurement of niche width , 2007 .

[21]  Antoine Guisan,et al.  How reliable is the monitoring of permanent vegetation plots? A test with multiple observers , 2007 .

[22]  M. Austin Species distribution models and ecological theory: A critical assessment and some possible new approaches , 2007 .

[23]  M. Pärtel,et al.  WORKING GROUP ON DRY GRASSLANDS IN THE NORDIC AND BALTIC REGION - OUTLINE OF THE PROJECT AND FIRST RESULTS FOR THE CLASS FESTUCO-BROMETEA , 2006 .

[24]  J. Dengler,et al.  Moose und Flechten als diagnostische Arten von Pflanzengesellschaften - eine Übersicht aus Mecklenburg-Vorpommern , 2005 .

[25]  J. Dengler,et al.  NEW IDEAS FOR MODERN PHYTOSOCIOLOGICAL MONOGRAPHS , 2005 .

[26]  Jörg Ewald,et al.  A critique for phytosociology , 2003 .

[27]  Milan Chytrý,et al.  Czech National Phytosociological Database: basic statistics of the available vegetation-plot data Česká národní fytocenologická databáze: základní statistika dostupných snímkových dat , 2003 .

[28]  Antonio Di Gregorio,et al.  Parametric land cover and land-use classifications as tools for environmental change detection , 2002 .

[29]  Nicholas J. Gotelli,et al.  SPECIES CO‐OCCURRENCE: A META‐ANALYSIS OF J. M. DIAMOND'S ASSEMBLY RULES MODEL , 2002 .

[30]  J. Ewald A probabilistic approach to estimating species pools from large compositional matrices , 2002 .

[31]  J. Schaminée,et al.  TURBOVEG, a comprehensive data base management system for vegetation data , 2001 .

[32]  F. Jansen,et al.  Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung , 2001 .

[33]  Ladislav Mucina,et al.  Common data standards for recording relevés in field survey for vegetation classification. , 2000 .

[34]  M. Bossard,et al.  CORINE land cover technical guide - Addendum 2000 , 2000 .

[35]  R. Wisskirchen,et al.  Standardliste der Farn- und Blütenpflanzen Deutschlands , 1998 .

[36]  P. Comon a Probabilistic Approach , 1995 .

[37]  S. Varadhan,et al.  A probabilistic approach to , 1974 .