Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation.

We report a scalably synthesized WO3/BiVO4 core/shell nanowire photoanode in which BiVO4 is the primary light-absorber and WO3 acts as an electron conductor. These core/shell nanowires achieve the highest product of light absorption and charge separation efficiencies among BiVO4-based photoanodes to date and, even without an added catalyst, produce a photocurrent of 3.1 mA/cm(2) under simulated sunlight and an incident photon-to-current conversion efficiency of ∼ 60% at 300-450 nm, both at a potential of 1.23 V versus RHE.

[1]  Kai Zhu,et al.  Efficient solar photoelectrolysis by nanoporous Mo:BiVO4 through controlled electron transport. , 2014, Physical chemistry chemical physics : PCCP.

[2]  Peidong Yang,et al.  Semiconductor Nanowires for Artificial Photosynthesis , 2014 .

[3]  Liejin Guo,et al.  Fabricating CdS/BiVO4 and BiVO4/CdS heterostructured film photoelectrodes for photoelectrochemical applications , 2013 .

[4]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[5]  T. Furtak,et al.  Efficient photoelectrochemical water oxidation over cobalt-phosphate (Co-Pi) catalyst modified BiVO4/1D-WO3 heterojunction electrodes. , 2013, Physical chemistry chemical physics : PCCP.

[6]  Tom J. Savenije,et al.  The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study , 2013 .

[7]  Miro Zeman,et al.  Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode , 2013, Nature Communications.

[8]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[9]  Kevin C. Leonard,et al.  Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and Zn(x)Cd(1-x)Se. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  A. Bard,et al.  Combined charge carrier transport and photoelectrochemical characterization of BiVO4 single crystals: intrinsic behavior of a complex metal oxide. , 2013, Journal of the American Chemical Society.

[11]  B. Liu,et al.  A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. , 2013, Nano letters.

[12]  Hyunwoong Park,et al.  Strategic Modification of BiVO4 for Improving Photoelectrochemical Water Oxidation Performance , 2013 .

[13]  R. Sinclair,et al.  Erratum: Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance , 2013, Nature Communications.

[14]  Hyunwoong Park,et al.  Solar water oxidation using nickel-borate coupled BiVO4 photoelectrodes. , 2013, Physical chemistry chemical physics : PCCP.

[15]  N. Wang,et al.  Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias. , 2013, Physical chemistry chemical physics : PCCP.

[16]  Yiseul Park,et al.  Progress in bismuth vanadate photoanodes for use in solar water oxidation. , 2013, Chemical Society reviews.

[17]  John A Turner,et al.  BiVO(4)/CuWO(4) heterojunction photoanodes for efficient solar driven water oxidation. , 2013, Physical chemistry chemical physics : PCCP.

[18]  F. Abdi,et al.  Efficient BiVO4 Thin Film Photoanodes Modified with Cobalt Phosphate Catalyst and W‐doping , 2013 .

[19]  Wenjun Luo,et al.  Formation energy and photoelectrochemical properties of BiVO4 after doping at Bi3+ or V5+ sites with higher valence metal ions. , 2013, Physical chemistry chemical physics : PCCP.

[20]  Xiaolin Zheng,et al.  Flame synthesis of WO3 nanotubes and nanowires for efficient photoelectrochemical water-splitting , 2013 .

[21]  Fan Zuo,et al.  Visible light-driven α-Fe₂O₃ nanorod/graphene/BiV₁-xMoxO₄ core/shell heterojunction array for efficient photoelectrochemical water splitting. , 2012, Nano letters.

[22]  Kyoung-Shin Choi,et al.  A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation , 2012 .

[23]  Jong Hyeok Park,et al.  Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers. , 2012, Physical chemistry chemical physics : PCCP.

[24]  A. Kudo,et al.  Facile fabrication of an efficient BiVO4 thin film electrode for water splitting under visible light irradiation , 2012, Proceedings of the National Academy of Sciences.

[25]  C. Mullins,et al.  Incorporation of Mo and W into nanostructured BiVO4 films for efficient photoelectrochemical water oxidation. , 2012, Physical chemistry chemical physics : PCCP.

[26]  T. Furtak,et al.  Light induced water oxidation on cobalt-phosphate (Co-Pi) catalyst modified semi-transparent, porous SiO2-BiVO4 electrodes. , 2012, Physical chemistry chemical physics : PCCP.

[27]  Roel van de Krol,et al.  Nature and Light Dependence of Bulk Recombination in Co-Pi-Catalyzed BiVO4 Photoanodes , 2012 .

[28]  K. Sayama,et al.  Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. , 2012, Chemical communications.

[29]  Samir Bensaid,et al.  Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. , 2012, ChemSusChem.

[30]  Kyoung-Shin Choi,et al.  Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. , 2012, Journal of the American Chemical Society.

[31]  W. Choi,et al.  Cobalt-phosphate complexes catalyze the photoelectrochemical water oxidation of BiVO4 electrodes. , 2011, Physical chemistry chemical physics : PCCP.

[32]  T. Furtak,et al.  Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation , 2011 .

[33]  D. Gamelin,et al.  Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4. , 2011, Journal of the American Chemical Society.

[34]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[35]  Tao Yu,et al.  Solar hydrogen generation from seawater with a modified BiVO4 photoanode , 2011 .

[36]  A. Bard,et al.  Factors in the Metal Doping of BiVO4 for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation , 2011 .

[37]  Roel van de Krol,et al.  Highly Improved Quantum Efficiencies for Thin Film BiVO4 Photoanodes , 2011 .

[38]  Yichuan Ling,et al.  Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation. , 2011, Nano letters.

[39]  Xiaolin Zheng,et al.  Unique magnetic properties of single crystal γ-Fe2O3 nanowires synthesized by flame vapor deposition. , 2011, Nano letters.

[40]  Jae Sung Lee,et al.  Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation , 2011 .

[41]  M. Grätzel,et al.  Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation , 2011 .

[42]  Liejin Guo,et al.  Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting. , 2011, Nano letters.

[43]  M. Grätzel,et al.  Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger , 2011 .

[44]  Z. Zou,et al.  Electronic structure and optical properties of monoclinic clinobisvanite BiVO4. , 2011, Physical chemistry chemical physics : PCCP.

[45]  Nathan T. Hahn,et al.  Photoelectrochemical Oxidation of Water Using Nanostructured BiVO4 Films , 2011 .

[46]  Xiaolin Zheng,et al.  Morphology-controlled flame synthesis of single, branched, and flower-like α-MoO3 nanobelt arrays. , 2011, Nano letters.

[47]  Xiaolin Zheng,et al.  Flame synthesis of tungsten oxide nanostructures on diverse substrates , 2011 .

[48]  Rose Amal,et al.  Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting , 2010 .

[49]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[50]  B. Marsen,et al.  Improved current collection in WO 3 :Mo/WO 3 bilayer photoelectrodes , 2010 .

[51]  B. Parkinson,et al.  Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. , 2009, Chemical Society reviews.

[52]  Y. Nosaka,et al.  FTO ∕ SnO2 ∕ BiVO4 Composite Photoelectrode for Water Oxidation under Visible Light Irradiation , 2008 .

[53]  Michael Grätzel,et al.  New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films , 2006 .

[54]  H. Sugihara,et al.  Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. , 2006, The journal of physical chemistry. B.

[55]  J. Augustynski,et al.  Enhanced Visible Light Conversion Efficiency Using Nanocrystalline WO3 Films , 2001 .

[56]  M. P. Dare-Edwards,et al.  New anode materials for photoelectrolysis , 1983 .

[57]  Michael A. Butler,et al.  Photoelectrolysis and physical properties of the semiconducting electrode WO2 , 1977 .