Powering internet-of-things from ambient energy: a review

Internet-of-thing (IoT) is an assembly of devices that collect and share data with other devices and communicate via the internet. This massive network of devices, generates and communicates data and is the key to the value in IoT, allowing access to raw information, gaining insight, and making an intelligent decisions. Today, there are billions of IoT devices such as sensors and actuators deployed. Many of these applications are easy to connect, but those tucked away in hard-to-access spots will need to harvest ambient energy. Therefore, the aim is to create devices that are self-report in real-time. Efforts are underway to install a self-powered unit in IoT devices that can generate sufficient power from environmental conditions such as light, vibration, and heat. In this review paper, we discuss the recent progress made in materials and device development in power- and, storage units, and power management relevant for IoT applications. This review paper will give a comprehensive overview for new researchers entering the field of IoT and a collection of challenges as well as perspectives for people already working in this field.

[1]  C. Bahl,et al.  Two-Dimensional Elliptically Shaped Electromagnetic Vibration Energy Harvester , 2022, SSRN Electronic Journal.

[2]  C. Bahl,et al.  A two-dimensional electromagnetic vibration energy harvester with variable stiffness , 2022, Applied Energy.

[3]  Yun Yang,et al.  Efficient Perovskite Indoor Photovoltaics with Open‐Circuit Voltage of 1.15 V via Collaborative Optimization of CsPbI2Br Layer and Hole Transport Layer , 2022, Small methods.

[4]  J. Chen,et al.  Full‐Dimensional Grain Boundary Stress Release for Flexible Perovskite Indoor Photovoltaics , 2022, Advanced materials.

[5]  Haoxu Wang,et al.  Low-Trap-Density CsPbX3 Film for High-Efficiency Indoor Photovoltaics. , 2022, ACS applied materials & interfaces.

[6]  Xingyu Gao,et al.  Enhancement of exciton separation in indoor perovskite photovoltaics by employing conjugated organic chromophores , 2022, Journal of Power Sources.

[7]  I. Castelli,et al.  On the thermoelectric properties of Nb-doped SrTiO3 epitaxial thin films. , 2022, Physical chemistry chemical physics : PCCP.

[8]  F. Blaabjerg,et al.  A Comprehensive Review on Supercapacitor Applications and Developments , 2022, Energies.

[9]  Chunhui Liu,et al.  High‐Performance Indoor Organic Solar Cells Based on a Double‐Cable Conjugated Polymer , 2022, Solar RRL.

[10]  G. J. Snyder,et al.  Key properties of inorganic thermoelectric materials—tables (version 1) , 2022, Journal of Physics: Energy.

[11]  S. Biswas,et al.  Remarkably high performance of organic photovoltaic devices with 3,9-bis(2-methylene- (3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexyl meta-phenyl)-dithieno[2,3-d:2′,3′-d’]-s-indaceno[1,2-b:5,6-b’]dithiophene)- ethylhexyloxy] photoactive acceptor under halogen light illumination , 2022, Journal of Power Sources.

[12]  A. Aguadero,et al.  Visualizing local fast ionic conduction pathways in nanocrystalline lanthanum manganite by isotope exchange-atom probe tomography , 2022, Journal of Materials Chemistry A.

[13]  Reem Salim,et al.  Hydrogen-Based PEM Fuel Cells for Low-Cost Sustainable Powering of IoT Systems , 2021, 2021 International Conference on Decision Aid Sciences and Application (DASA).

[14]  Z. Zheng,et al.  Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance , 2021, Nature Communications.

[15]  Min-Yuan Shen,et al.  Application and prospect of supercapacitors in Internet of Energy (IOE) , 2021, Journal of Energy Storage.

[16]  Jea Woong Jo,et al.  Concentrated perovskite photovoltaics enable minimization of energy loss below 0.5 eV under artificial light‐emitting diode illumination , 2021, International Journal of Energy Research.

[17]  Maamar Bettayeb,et al.  Maximum power point tracking and photovoltaic energy harvesting for Internet of Things: A comprehensive review , 2021 .

[18]  J. Jung,et al.  Simultaneously enhanced efficiency and ambient stability of inorganic perovskite solar cells by employing tetramethylammonium chloride additive in CsPbI2Br , 2021, Journal of Materials Science & Technology.

[19]  E. Kymakis,et al.  Indoor Perovskite Photovoltaics for the Internet of Things—Challenges and Opportunities toward Market Uptake , 2021, Advanced Energy Materials.

[20]  R. Bjørk,et al.  The full phase space dynamics of a magnetically levitated electromagnetic vibration harvester , 2021, Scientific Reports.

[21]  M. Kanatzidis,et al.  Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal , 2021, Nature Materials.

[22]  Jingfeng Li,et al.  Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments , 2021, Science.

[23]  Xiudi Xiao,et al.  High Shunt Resistance SnO2‐PbO Electron Transport Layer for Perovskite Solar Cells Used in Low Lighting Applications , 2021, Advanced Sustainable Systems.

[24]  A. Aguadero,et al.  Direct Measurement of Oxygen Mass Transport at the Nanoscale , 2021, Advanced materials.

[25]  G. Cui,et al.  ‘V’ Shape A–D–A‐Type Designed Small Hole Conductors for Efficient Indoor and Outdoor Staging from Solid Dye‐Sensitized Solar Cells and Perovskite Solar Cells , 2021, Solar RRL.

[26]  K. Yamaji,et al.  Nanoengineering of cathode layers for solid oxide fuel cells to achieve superior power densities , 2021, Nature communications.

[27]  A. Hayashi,et al.  In situ Observation of the Deterioration Process of Sulfide-Based Solid Electrolytes Using Airtight and Air-Flow TEM Systems. , 2021, Microscopy.

[28]  Harold S. Park,et al.  Flexoelectric electricity generation by crumpling graphene , 2021 .

[29]  Hyungju Ahn,et al.  A tailored graft-type polymer as a dopant-free hole transport material in indoor perovskite photovoltaics , 2021, Journal of Materials Chemistry A.

[30]  X. Ren,et al.  40.1% Record Low‐Light Solar‐Cell Efficiency by Holistic Trap‐Passivation using Micrometer‐Thick Perovskite Film , 2021, Advanced materials.

[31]  D. Lim,et al.  Indoor Organic Photovoltaics for Self‐Sustaining IoT Devices: Progress, Challenges and Practicalization , 2021, ChemSusChem.

[32]  Jiyong Kim,et al.  Review on the operation of wearable sensors through body heat harvesting based on thermoelectric devices , 2021 .

[33]  Jae‐Joon Lee,et al.  The effects of crystal structure on the photovoltaic performance of perovskite solar cells under ambient indoor illumination , 2021 .

[34]  D. Bagnis,et al.  Efficient fully roll-to-roll coated encapsulated organic solar module for indoor applications , 2021 .

[35]  J. MacManus‐Driscoll,et al.  A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells , 2021, Nature communications.

[36]  Sibel Akkaya Oy,et al.  RETRACTED: Design of a piezoelectric energy conversion based wind generator , 2021, The International Journal of Electrical Engineering & Education.

[37]  W. Ma,et al.  A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor , 2021 .

[38]  Jie Lin,et al.  Promising Electrode and Electrolyte Materials for High‐Energy‐Density Thin‐Film Lithium Batteries , 2021, ENERGY & ENVIRONMENTAL MATERIALS.

[39]  Xiang Xu,et al.  An overview of high-performance indoor organic photovoltaics. , 2021, ChemSusChem.

[40]  M. Madsen,et al.  Deciphering Electron Interplay at the Fullerene/Sputtered TiOx Interface: A Barrier-Free Electron Extraction for Organic Solar Cells. , 2021, ACS applied materials & interfaces.

[41]  Dongsheng He,et al.  SnSe, the rising star thermoelectric material: a new paradigm in atomic blocks, building intriguing physical properties. , 2021, Materials horizons.

[42]  A. Tarancón,et al.  Managing Heat Transfer Issues in Thermoelectric Microgenerators , 2021, Heat Transfer - Design, Experimentation and Applications [Working Title].

[43]  G. Amaratunga,et al.  Indoor photovoltaics, The Next Big Trend in solution‐processed solar cells , 2021, InfoMat.

[44]  S. Pennycook,et al.  High-entropy-stabilized chalcogenides with high thermoelectric performance , 2021, Science.

[45]  Z. Ren,et al.  Stretchable ITO‐Free Organic Solar Cells with Intrinsic Anti‐Reflection Substrate for High‐Efficiency Outdoor and Indoor Energy Harvesting , 2021, Advanced Functional Materials.

[46]  U. Waghmare,et al.  Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2 , 2021, Science.

[47]  Shichun Mu,et al.  Synthesis, Modification, and Lithium‐Storage Properties of Spinel LiNi 0.5 Mn 1.5 O 4 , 2021 .

[48]  Zachary D. Hood,et al.  Processing thin but robust electrolytes for solid-state batteries , 2021, Nature Energy.

[49]  J. Shim,et al.  Indoor Organic Photovoltaics: Optimal Cell Design Principles with Synergistic Parasitic Resistance and Optical Modulation Effect , 2021, Advanced Energy Materials.

[50]  A. Tiwari,et al.  Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte , 2020, Communications Materials.

[51]  Zhao‐Kui Wang,et al.  CsPbBrI2 perovskites with low energy loss for high-performance indoor and outdoor photovoltaics. , 2020, Science bulletin.

[52]  Mahesh Y. Chougale,et al.  Bio-waste sunflower husks powder based recycled triboelectric nanogenerator for energy harvesting , 2021 .

[53]  Chunhui Duan,et al.  Indoor organic photovoltaics. , 2020, Science bulletin.

[54]  Zachary D. Hood,et al.  Lithium-film ceramics for solid-state lithionic devices , 2020, Nature Reviews Materials.

[55]  Wenhao Chen,et al.  Forced vibration of piezoelectric and flexoelectric Euler–Bernoulli beams by dynamic Green’s functions , 2020, Acta Mechanica.

[56]  J. Hummelen,et al.  N-type organic thermoelectrics: demonstration of ZT > 0.3 , 2020, Nature Communications.

[57]  Ji‐Guang Zhang,et al.  Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO2 Batteries , 2020, Advanced materials.

[58]  Keiichi Okajima,et al.  Comparative analysis of fuel cell and battery energy systems for Internet of Things devices , 2020 .

[59]  B. Mann,et al.  Analytical Force and Flux for a 1-D Electromagnetic Vibration Energy Harvester , 2020, IEEE Transactions on Magnetics.

[60]  Meng Li,et al.  Indoor application of emerging photovoltaics—progress, challenges and perspectives , 2020, Journal of Materials Chemistry A.

[61]  Hassan Elahi,et al.  Energy Harvesting towards Self-Powered IoT Devices , 2020, Energies.

[62]  S. Bobev,et al.  New n-Type Zintl Phases for Thermoelectrics: Discovery, Structural Characterization, and Band Engineering of the Compounds A2CdP2 (A = Sr, Ba, Eu) , 2020, Chemistry of Materials.

[63]  K. Lu,et al.  Scavenging power from ultra-low frequency and large amplitude vibration source through a new non-resonant electromagnetic energy harvester , 2020 .

[64]  Hyoungchul Kim,et al.  Multiscale structured low-temperature solid oxide fuel cells with 13 W power at 500 °C , 2020 .

[65]  V. Leborán,et al.  Large thermoelectric power variations in epitaxial thin films of layered perovskite GdBaCo2O5.5±δ with a different preferred orientation and strain , 2020, Journal of Materials Chemistry A.

[66]  Chang-Su Woo,et al.  Flexopiezoelectricity at ferroelastic domain walls in WO3 films , 2020, Nature Communications.

[67]  Engineering,et al.  Giant Polarization and Abnormal Flexural Deformation in Bent Freestanding Perovskite Oxides. , 2020, 2009.03177.

[68]  K. Maggio,et al.  Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities , 2020, Nature Communications.

[69]  N. Pryds,et al.  Charge-transfer engineering strategies for tailored ionic conductivity at oxide interfaces , 2020 .

[70]  Saikat Ghosh,et al.  A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: electricity generation from pomelo fruit membrane , 2020, Scientific Reports.

[71]  A. Tiwari,et al.  Fast charge transfer across the Li7La3Zr2O12 solid electrolyte / LiCoO2 cathode interface enabled by an interphase-engineered all-thin-film architecture. , 2020, ACS applied materials & interfaces.

[72]  K. Wong,et al.  High-Efficiency Indoor Organic Photovoltaics with a Band-Aligned Interlayer , 2020, Joule.

[73]  D. Genov,et al.  Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights , 2020 .

[74]  M. Guennou,et al.  Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials , 2020, Nature Reviews Physics.

[75]  B. Arredondo,et al.  Identification of Degradation Mechanisms in Slot-Die-Coated Nonfullerene ITO-Free Organic Solar Cells Using Different Illumination Spectra , 2020 .

[76]  Buddhi Sagar Lamsal,et al.  Rear‐Illuminated Perovskite Photorechargeable Lithium Battery , 2020, Advanced Functional Materials.

[77]  Swarup Biswas,et al.  Solar Cells for Indoor Applications: Progress and Development , 2020, Polymers.

[78]  T. Brown,et al.  Perovskite Photovoltaics on Roll-To-Roll Coated Ultra-thin Glass as Flexible High-Efficiency Indoor Power Generators , 2020 .

[79]  Changduk Yang,et al.  Guest-oriented non-fullerene acceptors for ternary organic solar cells with over 16.0% and 22.7% efficiencies under one-sun and indoor light , 2020 .

[80]  N. Sharma,et al.  Pulsed laser deposition based thin film microbatteries. , 2020, Chemistry, an Asian journal.

[81]  Chih-Kong Ken Yang,et al.  A 92%-Efficiency Battery Powered Hybrid DC-DC Converter for IoT Applications , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[82]  Mario Leclerc,et al.  Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale , 2020, ACS Energy Letters.

[83]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020, Nature Energy.

[84]  I. Han,et al.  High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes , 2020 .

[85]  G. Yuan,et al.  A review of flexible perovskite oxide ferroelectric films and their application , 2020 .

[86]  K. Nishio,et al.  Low resistance at LiNi1/3Mn1/3Co1/3O2 and Li3PO4 interfaces , 2020 .

[87]  Marco P. Soares dos Santos,et al.  Electromagnetic energy harvesting using magnetic levitation architectures: A review , 2020, Applied Energy.

[88]  Yang Yang,et al.  A mini-review: emerging all-solid-state energy storage electrode materials for flexible devices. , 2020, Nanoscale.

[89]  Hang Yin,et al.  From 33% to 57% – an elevated potential of efficiency limit for indoor photovoltaics , 2020 .

[90]  Mehmet C. Öztürk,et al.  Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems , 2020 .

[91]  Shangfeng Yang,et al.  18% Efficiency organic solar cells. , 2020, Science bulletin.

[92]  Francesca Tavazza,et al.  High-throughput density functional perturbation theory and machine learning predictions of infrared, piezoelectric, and dielectric responses , 2019, npj Computational Materials.

[93]  S. Trivedi,et al.  A review of aspects of additive engineering in perovskite solar cells , 2020 .

[94]  Ken-Tsung Wong,et al.  Device characteristics and material developments of indoor photovoltaic devices , 2020 .

[95]  Sungmin Park,et al.  High-Performance and Stable Nonfullerene Acceptor-Based Organic Solar Cells for Indoor to Outdoor Light , 2020, ACS Energy Letters.

[96]  Mark Lee Silicon: a Revenant Thermoelectric Material? , 2020, Journal of Superconductivity and Novel Magnetism.

[97]  Mohammed Ismail,et al.  A comprehensive review of Thermoelectric Generators: Technologies and common applications , 2019, Energy Reports.

[98]  M. Madsen,et al.  Slot-die processing and encapsulation of non-fullerene based ITO-free organic solar cells and modules , 2019, Flexible and Printed Electronics.

[99]  J. Santiso,et al.  Thin film oxide-ion conducting electrolyte for near room temperature applications , 2019, Journal of Materials Chemistry A.

[100]  Sungmin Park,et al.  Intrinsic photo-degradation and mechanism of polymer solar cells: the crucial role of non-fullerene acceptors , 2019, Journal of Materials Chemistry A.

[101]  F. Khan,et al.  Flow type electromagnetic based energy harvester for pipeline health monitoring system , 2019, Energy Conversion and Management.

[102]  S. Ullah,et al.  Thermoelectric performance of a metastable thin-film Heusler alloy , 2019, Nature.

[103]  M. Nielsen,et al.  Oxygen-dependent photophysics and photochemistry of prototypical compounds for organic photovoltaics: inhibiting degradation initiated by singlet oxygen at a molecular level , 2019, Methods and applications in fluorescence.

[104]  Joonsuk Park,et al.  Ultra-Thin Atomic Layer Deposited CeO2 Overlayer for High-Performance Fuel Cell Electrodes. , 2019, ACS applied materials & interfaces.

[105]  Hamzeh Bardaweel,et al.  High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations , 2019, Applied Energy.

[106]  L. Anatychuk,et al.  Electrical resistance of metal contact to Bi2Te3 based thermoelectric legs , 2019, Journal of Applied Physics.

[107]  Mohsen Safaei,et al.  A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018) , 2019, Smart Materials and Structures.

[108]  J. Gražulevičius,et al.  Biomimetic approach to inhibition of photooxidation in organic solar cells using beta-carotene as an additive. , 2019, ACS applied materials & interfaces.

[109]  Haijun Wu,et al.  High thermoelectric performance in low-cost SnS0.91Se0.09 crystals , 2019, Science.

[110]  O. Inganäs,et al.  Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications , 2019, Nature Energy.

[111]  J. An,et al.  Review on process-microstructure-performance relationship in ALD-engineered SOFCs , 2019, Journal of Physics: Energy.

[112]  Hui Wang,et al.  Synthesis and Properties of NASICON-type LATP and LAGP Solid Electrolytes. , 2019, ChemSusChem.

[113]  P. He,et al.  Solid-State Electrolytes for Lithium-Ion Batteries: Fundamentals, Challenges and Perspectives , 2019, Electrochemical Energy Reviews.

[114]  Gang Chen,et al.  High thermoelectric cooling performance of n-type Mg3Bi2-based materials , 2019, Science.

[115]  K. Yu,et al.  Effects of oxygen stoichiometry on the phase stability of sputter-deposited CdxZn1−xO alloys , 2019, Physical Review Materials.

[116]  P. Sharma,et al.  Flexoelectricity as a universal mechanism for energy harvesting from crumpling of thin sheets , 2019, Physical Review B.

[117]  P. Bruce,et al.  Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells , 2019, Nature Materials.

[118]  Y. Iriyama,et al.  A Li-free inverted-stack all-solid-state thin film battery using crystalline cathode material , 2019, Electrochemistry Communications.

[119]  G. Hu,et al.  Silicon integrated circuit thermoelectric generators with a high specific power generation capacity , 2019, Nature Electronics.

[120]  Albert Tarancón,et al.  Powering the IoT revolution with heat , 2019, Nature Electronics.

[121]  Yannan Xie,et al.  The construction of integrated Si-based micro proton exchange membrane fuel cells with improved performances , 2019, Nano Energy.

[122]  Manos M. Tentzeris,et al.  A Scalable High-Gain and Large-Beamwidth mm-wave Harvesting Approach for 5G-powered IoT , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[123]  E. Tsymbal,et al.  Freestanding crystalline oxide perovskites down to the monolayer limit , 2019, Nature.

[124]  M. Dargusch,et al.  Flexible Thermoelectric Materials and Generators: Challenges and Innovations , 2019, Advanced materials.

[125]  Dario Narducci,et al.  Thermoelectric harvesters and the internet of things: technological and economic drivers , 2019, Journal of Physics: Energy.

[126]  Dennis Øland Larsen,et al.  Systematic Synthesis of Step-Down Switched-Capacitor Power Converter Topologies , 2019, IEEE Transactions on Circuits and Systems II: Express Briefs.

[127]  Nick R. Harris,et al.  Powering the Environmental Internet of Things , 2019, Sensors.

[128]  A. Tarancón,et al.  SiGe nanowire arrays based thermoelectric microgenerator , 2019, Nano Energy.

[129]  Jun Du,et al.  Research progress of all solid-state thin film lithium Battery , 2019, IOP Conference Series: Earth and Environmental Science.

[130]  Kangqi Fan,et al.  Capturing energy from ultra-low frequency vibrations and human motion through a monostable electromagnetic energy harvester , 2019, Energy.

[131]  A. Tarancón,et al.  All-silicon thermoelectric micro/nanogenerator including a heat exchanger for harvesting applications , 2019, Journal of Power Sources.

[132]  Yixuan Shi,et al.  Chalcogenides as thermoelectric materials , 2019, Journal of Solid State Chemistry.

[133]  Ian Marius Peters,et al.  Technology and Market Perspective for Indoor Photovoltaic Cells , 2019, Joule.

[134]  C. S. Psomopoulos,et al.  Sustainable Energy Harvesting through Triboelectric Nano – Generators: A Review of current status and applications , 2019, Energy Procedia.

[135]  Ziwei Ouyang,et al.  High-Q Three-Dimensional Microfabricated Magnetic-Core Toroidal Inductors for Power Supplies in Package , 2019, IEEE Transactions on Power Electronics.

[136]  A. Chroneos,et al.  Engineering Transport in Manganites by Tuning Local Nonstoichiometry in Grain Boundaries , 2018, Advanced materials.

[137]  A. Tarancón,et al.  Engineering mass transport properties in oxide ionic and mixed ionic-electronic thin film ceramic conductors for energy applications , 2018, Journal of the European Ceramic Society.

[138]  Minoo Naebe,et al.  Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting , 2017, IEEE Access.

[139]  T. Skotnicki,et al.  Thermoelectricity for IoT – A review , 2018, Nano Energy.

[140]  Y. Kamakura,et al.  Modeling, Simulation, Fabrication, and Characterization of a 10- $\mu$ W/cm2 Class Si-Nanowire Thermoelectric Generator for IoT Applications , 2018, IEEE Transactions on Electron Devices.

[141]  Bingbing Chen,et al.  Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. , 2018, Chemical Society reviews.

[142]  M. Busse,et al.  Flame aerosol deposited Li4Ti5O12 layers for flexible, thin film all-solid-state Li-ion batteries , 2018, Nano Energy.

[143]  P. Gao,et al.  Atomic-Scale Measurement of Flexoelectric Polarization at SrTiO_{3} Dislocations. , 2018, Physical review letters.

[144]  Satish Chandra Jain,et al.  A numerical study on flexoelectric bistable energy harvester , 2018, Applied Physics A.

[145]  Q. Wang,et al.  High n-type and p-type thermoelectric performance of two-dimensional SiTe at high temperature , 2018, RSC advances.

[146]  Li Lu,et al.  Review on solid electrolytes for all-solid-state lithium-ion batteries , 2018, Journal of Power Sources.

[147]  Yue Chen,et al.  3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals , 2018, Science.

[148]  Lei Fang,et al.  Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics , 2018 .

[149]  N. Pryds,et al.  Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cells , 2018 .

[150]  Joonsuk Park,et al.  High performance low-temperature solid oxide fuel cells with atomic layer deposited-yttria stabilized zirconia embedded thin film electrolyte , 2018 .

[151]  Takanobu Watanabe,et al.  The Possibility of mW/cm2-Class On-Chip Power Generation Using Ultrasmall Si Nanowire-Based Thermoelectric Generators , 2018, IEEE Transactions on Electron Devices.

[152]  Baolin Wang,et al.  Energy gathering performance of micro/nanoscale circular energy harvesters based on flexoelectric effect , 2018 .

[153]  Zhuo Xu,et al.  Ultrahigh piezoelectricity in ferroelectric ceramics by design , 2018, Nature Materials.

[154]  Baolin Wang,et al.  Analysis of an array of flexoelectric layered nanobeams for vibration energy harvesting , 2018 .

[155]  Shixue Wang,et al.  Experimental study of the effects of the thermal contact resistance on the performance of thermoelectric generator , 2018 .

[156]  Faizah,et al.  Optimizing the performance of Li4Ti5O12/LTO by addition of silicon microparticle in half cell litium-ion battery anode , 2018 .

[157]  Xiaoping Liao,et al.  Review of Micro Thermoelectric Generator , 2018, Journal of Microelectromechanical Systems.

[158]  G. Fecher,et al.  Half-Heusler compounds for thermoelectric energy conversion , 2018 .

[159]  G. Gautier Micro fuel cells based on silicon materials , 2018 .

[160]  Daniel A. Steingart,et al.  Review—Power Sources for the Internet of Things , 2018 .

[161]  Dong Sam Ha,et al.  A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits , 2017 .

[162]  Xiaogang Han,et al.  3D‐Printed All‐Fiber Li‐Ion Battery toward Wearable Energy Storage , 2017 .

[163]  Jun Chen,et al.  Stretchable Lithium‐Ion Batteries Enabled by Device‐Scaled Wavy Structure and Elastic‐Sticky Separator , 2017 .

[164]  Zhuoyu Chen,et al.  Imaging and tuning polarity at SrTiO3 domain walls. , 2017, Nature materials.

[165]  Christoph J. Brabec,et al.  Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates , 2017 .

[166]  Jae-sun Seo,et al.  Triple-Mode, Hybrid-Storage, Energy Harvesting Power Management Unit: Achieving High Efficiency Against Harvesting and Load Power Variabilities , 2017, IEEE Journal of Solid-State Circuits.

[167]  Rémy Ul,et al.  Complete electroelastic set of co doped barium titanate for transducer applications , 2017, 2017 IEEE International Ultrasonics Symposium (IUS).

[168]  Minjae Lee,et al.  A Design of a 92.4% Efficiency Triple Mode Control DC–DC Buck Converter With Low Power Retention Mode and Adaptive Zero Current Detector for IoT/Wearable Applications , 2017, IEEE Transactions on Power Electronics.

[169]  Shi Liu,et al.  Origin of Negative Longitudinal Piezoelectric Effect. , 2017, Physical review letters.

[170]  Albert Tarancón,et al.  Micro solid oxide fuel cells: a new generation of micro-power sources for portable applications , 2017, Microtechnologies.

[171]  Eongyu Yi,et al.  Key parameters governing the densification of cubic-Li 7 La 3 Zr 2 O 12 Li + conductors , 2017 .

[172]  J. Perez-Taborda,et al.  Silicon‐Germanium (SiGe) Nanostructures for Thermoelectric Devices: Recent Advances and New Approaches to High Thermoelectric Efficiency , 2017 .

[173]  Xu Han,et al.  PVDF‐Based Ferroelectric Polymers in Modern Flexible Electronics , 2017 .

[174]  P. Rogl,et al.  Skutterudites, a most promising group of thermoelectric materials , 2017 .

[175]  Zhi Yan Modeling of a nanoscale flexoelectric energy harvester with surface effects , 2017 .

[176]  Yang Zhou,et al.  Flexoelectric effect in PVDF-based polymers , 2017, IEEE Transactions on Dielectrics and Electrical Insulation.

[177]  P. Kodali,et al.  Crumpling for energy: modeling generated power from the crumpling of polymer piezoelectric foils for wearable electronics , 2017, 1702.05586.

[178]  Zheng Yuan,et al.  Silicon-Based Monolithic Planar Micro Thermoelectric Generator Using Bonding Technology , 2017, Journal of Microelectromechanical Systems.

[179]  S. Shen,et al.  Flexoelectric energy harvesters based on Timoshenko laminated beam theory , 2017 .

[180]  B. Iversen,et al.  Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands , 2017, Nature Communications.

[181]  M. Buffon Heusler materials for thermoelectric applications: phase separation, atomic site disorder, and interstitials , 2017 .

[182]  Sung-Jin Cho,et al.  Review of Nanotechnology for Cathode Materials in Batteries , 2017 .

[183]  Satish Chandra Jain,et al.  Structural Optimization for Wideband Flexoelectric Energy Harvester Using Bulk Paraelectric Ba0.6Sr0.4TiO3 , 2017, Journal of Electronic Materials.

[184]  H. Patricia McKenna,et al.  Urbanizing the Ambient: Why People Matter So Much in Smart Cities , 2017 .

[185]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[186]  Ya Wang,et al.  Repulsive magnetic levitation-based ocean wave energy harvester with variable resonance: Modeling, simulation and experiment , 2016 .

[187]  M. Kanatzidis,et al.  SnSe: a remarkable new thermoelectric material , 2016 .

[188]  E. Toberer,et al.  Zintl Phases: Recent Developments in Thermoelectrics and Future Outlook , 2016 .

[189]  Piotr Szulewski,et al.  Industrial automation products in the conception of Industry 4.0 , 2016 .

[190]  Baojin Chu,et al.  Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers , 2016 .

[191]  Ctirad Uher,et al.  Non-equilibrium processing leads to record high thermoelectric figure of merit in PbTe–SrTe , 2016, Nature Communications.

[192]  Perceval Pondrom,et al.  Stacked and folded piezoelectrets for vibration-based energy harvesting , 2016 .

[193]  D. Koelle,et al.  Local Electrical Imaging of Tetragonal Domains and Field-Induced Ferroelectric Twin Walls in Conducting SrTiO_{3}. , 2016, Physical review letters.

[194]  I. Terasaki Research Update: Oxide thermoelectrics: Beyond the conventional design rules , 2016 .

[195]  Geoffroy Hautier,et al.  Thinking Like a Chemist: Intuition in Thermoelectric Materials. , 2016, Angewandte Chemie.

[196]  S. Rühle Tabulated values of the Shockley–Queisser limit for single junction solar cells , 2016 .

[197]  Tingfeng Yi,et al.  Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries , 2016 .

[198]  Marco Tartagni,et al.  A Nanocurrent Power Management IC for Low-Voltage Energy Harvesting Sources , 2016, IEEE Transactions on Power Electronics.

[199]  Weiqing Yang,et al.  One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors , 2016 .

[200]  Juekuan Yang,et al.  A High Power Density Micro-Thermoelectric Generator Fabricated by an Integrated Bottom-Up Approach , 2016, Journal of Microelectromechanical Systems.

[201]  Ashudeb Dutta,et al.  Automated environment aware nW FOCV — MPPT controller for self-powered IoT applications , 2016, 2016 IEEE International Symposium on Circuits and Systems (ISCAS).

[202]  Pei Cheng,et al.  Stability of organic solar cells: challenges and strategies. , 2016, Chemical Society reviews.

[203]  Daniel A. Steingart,et al.  Fabrication of a High‐Performance Flexible Silver–Zinc Wire Battery , 2016 .

[204]  Edgar Sánchez-Sinencio,et al.  An Autonomous Energy Harvesting Power Management Unit With Digital Regulation for IoT Applications , 2016, IEEE Journal of Solid-State Circuits.

[205]  J. Baek,et al.  A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability. , 2016, Nano letters.

[206]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[207]  S. Shen,et al.  Improved approach to measure the direct flexoelectric coefficient of bulk polyvinylidene fluoride , 2016 .

[208]  K. Kim,et al.  Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability , 2016, Scientific Reports.

[209]  Umesh Kumar Bhaskar,et al.  A flexoelectric microelectromechanical system on silicon. , 2016, Nature nanotechnology.

[210]  P. Su,et al.  Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer , 2016, Scientific Reports.

[211]  A. Hayashi,et al.  5 V class LiNi0.5Mn1.5O4 positive electrode coated with Li3PO4 thin film for all-solid-state batteries using sulfide solid electrolyte , 2016 .

[212]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[213]  G. Rijnders,et al.  Flexoelectric MEMS: towards an electromechanical strain diode. , 2016, Nanoscale.

[214]  Marco P. Soares dos Santos,et al.  Magnetic levitation-based electromagnetic energy harvesting: a semi-analytical non-linear model for energy transduction , 2016, Scientific Reports.

[215]  C. Nan,et al.  Multiferroic Heterostructures Integrating Ferroelectric and Magnetic Materials , 2016, Advanced materials.

[216]  J. Gaudiot,et al.  Survey of Supercapacitor ’ s Application for Power Awareness of Embedded Systems in Internet of Things , 2016 .

[217]  Dimitrios Peroulis,et al.  Design and characterization of a low frequency 2-dimensional magnetic levitation kinetic energy harvester , 2015 .

[218]  Z. Hadas,et al.  Nonlinear spring-less electromagnetic vibration energy harvesting system , 2015 .

[219]  Pan Chen,et al.  Lead‐Free Metamaterials with Enormous Apparent Piezoelectric Response , 2015, Advanced materials.

[220]  Jeongjin Yeo,et al.  Multi-dimensional vibration energy harvester for efficient use in common environment , 2015, 2015 IEEE SENSORS.

[221]  Y. Yoon,et al.  A circular membrane for nano thin film micro solid oxide fuel cells with enhanced mechanical stability , 2015 .

[222]  A. Sánchez-González,et al.  Is it possible to design a portable power generator based on micro-solid oxide fuel cells? A finite volume analysis , 2015 .

[223]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[224]  Weidong He,et al.  Interfacial lattice-strain effects on improving the overall performance of micro-solid oxide fuel cells , 2015 .

[225]  Marco Tartagni,et al.  A Nanocurrent Power Management IC for Multiple Heterogeneous Energy Harvesting Sources , 2015, IEEE Transactions on Power Electronics.

[226]  Mark Asta,et al.  A database to enable discovery and design of piezoelectric materials , 2015, Scientific Data.

[227]  K. Amine,et al.  Silicon-Copper Helical Arrays for New Generation Lithium Ion Batteries. , 2015, Nano letters.

[228]  C. J. Tay,et al.  Development of a micro energy harvester using multiple vibration modes , 2015 .

[229]  Xinbing Zhao,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature Communications.

[230]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[231]  Paul F. Ndione,et al.  Design of Semiconducting Tetrahedral Mn 1 − x Zn x O Alloys and Their Application to Solar Water Splitting , 2015 .

[232]  Chang-Hyeon Ji,et al.  Low-frequency vibration energy harvester using a spherical permanent magnet with controlled mass distribution , 2015 .

[233]  Chih-Wei Chen,et al.  A Low-Power Dual-Frequency SIMO Buck Converter Topology With Fully-Integrated Outputs and Fast Dynamic Operation in 45 nm CMOS , 2015, IEEE Journal of Solid-State Circuits.

[234]  N. Pryds,et al.  Enhancement of the chemical stability in confined δ-Bi2O3. , 2015, Nature materials.

[235]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[236]  Jun Chen,et al.  Triboelectric–Pyroelectric–Piezoelectric Hybrid Cell for High‐Efficiency Energy‐Harvesting and Self‐Powered Sensing , 2015, Advanced materials.

[237]  Daniel A. Steingart,et al.  Recent Progress on Printed Flexible Batteries: Mechanical Challenges, Printing Technologies, and Future Prospects , 2015 .

[238]  Khalil Najafi,et al.  Cylindrical halbach magnet array for electromagnetic vibration energy harvesters , 2015, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS).

[239]  Ping Li,et al.  Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations , 2015 .

[240]  F. Berkemeier,et al.  Ultra-thin LiPON films – Fundamental properties and application in solid state thin film model batteries , 2015 .

[241]  Miaofang Chi,et al.  Solid Electrolyte: the Key for High‐Voltage Lithium Batteries , 2015 .

[242]  Hongbo Zhu,et al.  Optimal Harvest-Use-Store Strategy for Energy Harvesting Wireless Systems , 2015, IEEE Transactions on Wireless Communications.

[243]  Hajime Igarashi,et al.  A chaotic vibration energy harvester using magnetic material , 2015 .

[244]  S. Ramanathan,et al.  Free standing yttria-doped zirconia membranes: Geometrical effects on stability , 2015, Journal of Electroceramics.

[245]  Kota Suzuki,et al.  Effect of surface Li 3 PO 4 coating on LiNi 0.5 Mn 1.5 O 4 epitaxial thin film electrodes synthesized by pulsed laser deposition , 2014 .

[246]  I. Mr.SHETHMahammedOvesh,et al.  A Survey on Wireless Body Area Network , 2014 .

[247]  Gibaek Lee,et al.  CMOS-compatible metal-stabilized nanostructured Si as anodes for lithium-ion microbatteries , 2014, Nanoscale Research Letters.

[248]  H. Hashemi,et al.  Capacitance-sharing, dual-output, compact, switched-capacitor DC–DC converter for low-power biomedical implants , 2014 .

[249]  Chuan Tian,et al.  Energy harvesting from low frequency applications using piezoelectric materials , 2014 .

[250]  Qian Zhang,et al.  Vibration Energy Harvesting Based on Magnet and Coil Arrays for Watt-Level Handheld Power Source , 2014, Proceedings of the IEEE.

[251]  Luis Fonseca,et al.  Full ceramic micro solid oxide fuel cells: towards more reliable MEMS power generators operating at high temperatures , 2014 .

[252]  Haijun Wu,et al.  High thermoelectric performance realized in a BiCuSeO system by improving carrier mobility through 3D modulation doping. , 2014, Journal of the American Chemical Society.

[253]  Arnab Raha,et al.  Powering the Internet of Things , 2014, 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

[254]  Jiamei Jin,et al.  Rotational piezoelectric wind energy harvesting using impact-induced resonance , 2014 .

[255]  Yogesh K. Ramadass,et al.  Powering the internet of things , 2014, 2014 IEEE Hot Chips 26 Symposium (HCS).

[256]  Alejandro J. Santis-Alvarez,et al.  A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional micro- fluidic carrier , 2014 .

[257]  Bruno Franciscatto,et al.  Design and implementation of a new low-power consumption DSRC transponder , 2014 .

[258]  Daniel J. Apo,et al.  High Power Density Levitation-Induced Vibration Energy Harvester , 2014 .

[259]  Yan Zhang,et al.  Low frequency wideband nano generators for energy harvesting from natural environment , 2014 .

[260]  P. Irazoqui,et al.  Ultrasmall Integrated 3D Micro‐Supercapacitors Solve Energy Storage for Miniature Devices , 2014 .

[261]  Y. Uesu,et al.  Direct evidence of polar nature of ferroelastic twin boundaries in CaTiO3 obtained by second harmonic generation microscope , 2014 .

[262]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[263]  J. Martynczuk,et al.  Micro‐Solid Oxide Fuel Cell Membranes Prepared by Aerosol‐Assisted Chemical Vapor Deposition , 2014 .

[264]  Javier Rodríguez-Viejo,et al.  Micropower thermoelectric generator from thin Si membranes , 2014 .

[265]  Cesare Stefanini,et al.  Piezoelectric Energy Harvesting Solutions , 2014, Sensors.

[266]  Peter Woias,et al.  Design and Characterization of Micro Thermoelectric Cross-Plane Generators With Electroplated ${\rm Bi}_{2}{\rm Te}_{3}$ , ${\rm Sb}_{x}{\rm Te}_{y}$ , and Reflow Soldering , 2014, Journal of Microelectromechanical Systems.

[267]  K. Yoon,et al.  The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells , 2014 .

[268]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[269]  S. Boldrini,et al.  Silica-Based Materials for Thermoelectric-Legs Embedding , 2014 .

[270]  M. Hayase,et al.  Miniature fuel cell with monolithically fabricated Si electrodes – Uniformity of Catalyst Layer Thickness - , 2014 .

[271]  S. Cha,et al.  Fabrication of the large area thin-film solid oxide fuel cells , 2014 .

[272]  Aurelio Soma,et al.  Comparison between piezoelectric and magnetic strategies for wearable energy harvesting , 2013 .

[273]  Li Lu,et al.  Li-rich Thin Film Cathode Prepared by Pulsed Laser Deposition , 2013, Scientific Reports.

[274]  S. Ducharme,et al.  Measurement of the flexoelectric response in ferroelectric and relaxor polymer thin films , 2013 .

[275]  Mohan V. Jacob,et al.  Materials and methods for encapsulation of OPV: A review , 2013 .

[276]  Limei Zheng,et al.  Large size lead-free (Na,K)(Nb,Ta)O3 piezoelectric single crystal: growth and full tensor properties , 2013 .

[277]  F. Prinz,et al.  Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm(2) at 450 °C. , 2013, Nano letters.

[278]  P. Su,et al.  Combinatorial deposition of a dense nano-thin film YSZ electrolyte for low temperature solid oxide fuel cells , 2013 .

[279]  Han Li,et al.  Metal nanoparticle decorated n-type Bi2Te3-based materials with enhanced thermoelectric performances , 2013, Nanotechnology.

[280]  Pavlo Zubko,et al.  Flexoelectric Effect in Solids , 2013 .

[281]  A. Anders,et al.  Crystal structure and properties of CdxZn1−xO alloys across the full composition range , 2013 .

[282]  S. Cha,et al.  Thin film solid oxide fuel cell using a pinhole-free and dense Y-doped BaZrO3 , 2013 .

[283]  Jagjit Nanda,et al.  Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2 , 2013 .

[284]  David Blaauw,et al.  A Millimeter-Scale Energy-Autonomous Sensor System With Stacked Battery and Solar Cells , 2013, IEEE Journal of Solid-State Circuits.

[285]  Ali A. Nasir,et al.  Relaying Protocols for Wireless Energy Harvesting and Information Processing , 2012, IEEE Transactions on Wireless Communications.

[286]  R. Röthlisberger,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO , 2013 .

[287]  Saravana Selvan,et al.  Modeling and Simulation of Incremental Conductance MPPT Algorithm for Photovoltaic Applications , 2013 .

[288]  Seok-Jin Yoon,et al.  Electrochemical properties of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode thin film by RF sputtering for all-solid-state lithium battery , 2012 .

[289]  E. Salje,et al.  Domain wall damping and elastic softening in SrTiO3: evidence for polar twin walls. , 2012, Physical review letters.

[290]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[291]  D. Salem,et al.  Flexoelectricity in several thermoplastic and thermosetting polymers , 2012 .

[292]  L. Gauckler,et al.  Processing of Foturan® glass ceramic substrates for micro-solid oxide fuel cells , 2012 .

[293]  Tomi Roinila,et al.  CMOS MEMS-based thermoelectric generator with an efficient heat dissipation path , 2012 .

[294]  M. Eickhoff,et al.  Binary copper oxide semiconductors: From materials towards devices , 2012 .

[295]  A. Manthiram,et al.  Role of Oxygen Vacancies on the Performance of Li[Ni0.5–xMn1.5+x]O4 (x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries , 2012 .

[296]  Wenning Di,et al.  Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 , 2012 .

[297]  H. Peisert,et al.  Wavelength-Dependent Pathways of Poly-3-hexylthiophene Photo-Oxidation , 2012 .

[298]  Gwiy-Sang Chung,et al.  Design and Analysis of a Vibration-driven AA Size Electromagnetic Energy Harvester Using Magnetic Spring , 2012 .

[299]  S. Ramanathan,et al.  Nanoscale Compositionally Graded Thin‐Film Electrolyte Membranes for Low‐Temperature Solid Oxide Fuel Cells , 2012 .

[300]  M. Saleem,et al.  Optical properties of iron oxide (α-Fe2O3) thin films deposited by the reactive evaporation of iron , 2012 .

[301]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[302]  S. Ramanathan,et al.  Free standing oxide alloy electrolytes for low temperature thin film solid oxide fuel cells , 2012 .

[303]  A. Tagantsev,et al.  Finite-temperature flexoelectricity in ferroelectric thin films from first principles , 2012 .

[304]  Hui Wang,et al.  Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2 , 2012 .

[305]  Daoben Zhu,et al.  Organic Thermoelectric Materials and Devices Based on p‐ and n‐Type Poly(metal 1,1,2,2‐ethenetetrathiolate)s , 2012, Advanced materials.

[306]  John E. Bowers,et al.  Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices , 2012, Journal of Electronic Materials.

[307]  Jagjit Nanda,et al.  Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2 , 2012 .

[308]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[309]  B. Zahawi,et al.  Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications , 2012, IEEE Transactions on Sustainable Energy.

[310]  Raul Morais,et al.  Double permanent magnet vibration power generator for smart hip prosthesis , 2011 .

[311]  Xiaoning Jiang,et al.  Scaling effect of flexoelectric (Ba,Sr)TiO3 microcantilevers , 2011 .

[312]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[313]  I. Chan,et al.  Thin film solar cells for indoor use , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[314]  John Y. Fu,et al.  Experimental studies on the direct flexoelectric effect in α-phase polyvinylidene fluoride films , 2011 .

[315]  Yi Cui,et al.  Improved solid oxide fuel cell performance with nanostructured electrolytes. , 2011, ACS nano.

[316]  Xiangyang Ma,et al.  Optical properties of sputtered hexagonal CdZnO films with band gap energies from 1.8 to 3.3 eV , 2011 .

[317]  N. Pryds,et al.  Enhancement of the Thermoelectric Performance of p‐Type Layered Oxide Ca3Co4O9+δ Through Heavy Doping and Metallic Nanoinclusions , 2011, Advanced materials.

[318]  Young Beom Kim,et al.  Crater patterned 3-D proton conducting ceramic fuel cell architecture with ultra thin Y:BaZrO3 electrolyte , 2011 .

[319]  Bo-Kuai Lai,et al.  Scalable nanostructured membranes for solid-oxide fuel cells. , 2011, Nature nanotechnology.

[320]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[321]  Ki-Bum Kim,et al.  High‐Performance Micro‐Solid Oxide Fuel Cells Fabricated on Nanoporous Anodic Aluminum Oxide Templates , 2011 .

[322]  K. Buddharaju,et al.  Chip-Level Thermoelectric Power Generators Based on High-Density Silicon Nanowire Array Prepared With Top-Down CMOS Technology , 2011, IEEE Electron Device Letters.

[323]  Shih-Ming Yang,et al.  Application of quantum well-like thermocouple to thermoelectric energy harvester by BiCMOS process , 2011 .

[324]  S. Ramanathan,et al.  Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations , 2011 .

[325]  Michael C. McAlpine,et al.  Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. , 2011, Nano letters.

[326]  Athanasios V. Vasilakos,et al.  Body Area Networks: A Survey , 2010, Mob. Networks Appl..

[327]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[328]  Ingrid Moerman,et al.  A survey on wireless body area networks , 2011, Wirel. Networks.

[329]  Kazunori Watanabe,et al.  0.5-V input digital LDO with 98.7% current efficiency and 2.7-µA quiescent current in 65nm CMOS , 2010, IEEE Custom Integrated Circuits Conference 2010.

[330]  S. Licoccia,et al.  Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. , 2010, Small.

[331]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[332]  Peter H. L. Notten,et al.  3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries , 2010 .

[333]  Carles Cané,et al.  Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuel cells applications , 2010 .

[334]  Dragan Damjanovic,et al.  WHAT CAN BE EXPECTED FROM LEAD-FREE PIEZOELECTRIC MATERIALS? , 2010 .

[335]  Siu Wing Or,et al.  Energy harvesting using a modified rectangular cymbal transducer based on 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal , 2010 .

[336]  J. Janek,et al.  Physical Chemistry of Solids – The Science behind Materials Engineering: Concepts, Models, Methods , 2009 .

[337]  E. Peled,et al.  High Power Copper Sulfide Cathodes for Thin-Film Microbatteries , 2009 .

[338]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[339]  Jennifer L. M. Rupp,et al.  Review on microfabricated micro-solid oxide fuel cell membranes , 2009 .

[340]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[341]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[342]  David Blaauw,et al.  A hybrid DC-DC converter for sub-microwatt sub-1V implantable applications , 2009, 2009 Symposium on VLSI Circuits.

[343]  Agnès Rivaton,et al.  The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered , 2009 .

[344]  R. Maranganti,et al.  Atomistic determination of flexoelectric properties of crystalline dielectrics , 2009, 0903.0684.

[345]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[346]  S. Beeby,et al.  Electromagnetic Energy Harvesting , 2009 .

[347]  L. Gauckler,et al.  Micro Solid Oxide Fuel Cells on Glass Ceramic Substrates , 2008 .

[348]  J. M. Gilbert,et al.  Comparison of energy harvesting systems for wireless sensor networks , 2008, Int. J. Autom. Comput..

[349]  Tahir Cagin,et al.  Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures , 2008 .

[350]  G. J. Snyder,et al.  Traversing the Metal‐Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1−xAlxSb11 , 2008 .

[351]  Dan Zhou,et al.  Characterization of complete electromechanical constants of rhombohedral 0.72Pb(Mg1/3Nb2/3)–0.28PbTiO3 single crystals , 2008 .

[352]  G. Choi,et al.  Simple fabrication of micro-solid oxide fuel cell supported on metal substrate , 2008 .

[353]  S J Pennycook,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures , 2008, Science.

[354]  J. Scott,et al.  Erratum: Strain-Gradient-Induced Polarization in SrTiO 3 Single Crystals [Phys. Rev. Lett. 99, 167601 (2007)] , 2008 .

[355]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[356]  Dimos Poulikakos,et al.  A micro-solid oxide fuel cell system as battery replacement , 2008 .

[357]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[358]  Shuo Cheng,et al.  Modeling of magnetic vibrational energy harvesters using equivalent circuit representations , 2007 .

[359]  Hyeoungwoo Kim,et al.  Consideration of Impedance Matching Techniques for Efficient Piezoelectric Energy Harvesting , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[360]  Edgar Sánchez-Sinencio,et al.  Full On-Chip CMOS Low-Dropout Voltage Regulator , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[361]  Chang-Beom Eom,et al.  Strain Tuning of Ferroelectric Thin Films , 2007 .

[362]  Shinsuke Yamanaka,et al.  High-Thermoelectric Figure of Merit Realized in p-Type Half-Heusler Compounds: ZrCoSnxSb1-x , 2007 .

[363]  E. Mclaughlin,et al.  Mechanical and thermal transitions in morphotropic PZN-PT and PMN-PT single crystals and their implication for sound projectors , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[364]  J. Nurnus,et al.  New high density micro structured thermogenerators for stand alone sensor systems , 2007, 2007 26th International Conference on Thermoelectrics.

[365]  J. Scott,et al.  Strain-gradient-induced polarization in SrTiO3 single crystals. , 2007, Physical review letters.

[366]  G. J. Snyder,et al.  Zintl phases for thermoelectric devices. , 2007, Dalton transactions.

[367]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[368]  J. Temmyo,et al.  Zn1−xCdxO systems with visible band gaps , 2006 .

[369]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[370]  L. Eric Cross,et al.  Flexoelectricity of barium titanate , 2006 .

[371]  Thierry Caillat,et al.  Thermoelectric Materials for Space and Automotive Power Generation , 2006 .

[372]  G. Stucky,et al.  Large thermoelectric figure of merit at high temperature in Czochralski-grown clathrate Ba8Ga16Ge30 , 2006 .

[373]  L. Eric Cross,et al.  Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients , 2006 .

[374]  Tsutomu Ohzuku,et al.  Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries , 2005 .

[375]  Michael J Sailor,et al.  "Smart dust": nanostructured devices in a grain of sand. , 2005, Chemical communications.

[376]  L. Eric Cross,et al.  Flexoelectric effect in ceramic lead zirconate titanate , 2005 .

[377]  Xing Zhang,et al.  Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites , 2005 .

[378]  R. Rocheleau,et al.  Low-temperature reactively sputtered iron oxide for thin film devices , 2004 .

[379]  P. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[380]  M. Kanatzidis,et al.  A new thermoelectric material: CsBi4Te6. , 2004, Journal of the American Chemical Society.

[381]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[382]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[383]  P. Cheng,et al.  Fabrication of a miniature twin-fuel-cell on silicon wafer , 2003 .

[384]  H. Lee,et al.  Stress effect on cycle properties of the silicon thin-film anode , 2001 .

[385]  William W. Clark,et al.  Piezoelectric energy harvesting for bio-MEMS applications , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[386]  L. Eric Cross,et al.  Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics , 2001 .

[387]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[388]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[389]  Susan Trolier-McKinstry,et al.  The Properties of Ferroelectric Films at Small Dimensions , 2000 .

[390]  W. Cao,et al.  Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn/sub 1/3/Nb/sub 2/3/)O/sub 3/-0.45PbTiO/sub 3/ single crystal with designed multidomains , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[391]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[392]  Liquan Chen,et al.  Oxide cathode with perovskite structure for rechargeable lithium batteries , 1995 .

[393]  K. Kanehori,et al.  Thin film solid electrolyte and its application to secondary lithium cell , 1983 .