Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials

Carbon nanotubes show great promise for applications ranging from nanocomposites, nanoelectronic components, nanosensors, to nanoscale mechanical probes. These materials exhibit very attractive mechanical properties with extraordinarily high stiffness and strength, and are of great interest to researchers from both atomistic and continuum points of view. In this paper, we intend to develop a continuum theory of fracture nucleation in single-walled carbon nanotubes by incorporating interatomic potentials between carbon atoms into a continuum constitutive model for the nanotube wall. In this theory, the fracture nucleation is viewed as a bifurcation instability of a homogeneously deformed nanotube at a critical strain. An eigenvalue problem is set up to determine the onset of fracture, with results in good agreement with those from atomistic studies. ©2002 ASME

[1]  Boris I. Yakobson,et al.  Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes , 1998 .

[2]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[3]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[4]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[5]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[6]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[7]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[8]  Robertson,et al.  Energetics of nanoscale graphitic tubules. , 1992, Physical review. B, Condensed matter.

[9]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[10]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[11]  M. Nardelli,et al.  Brittle and Ductile Behavior in Carbon Nanotubes , 1998 .

[12]  S. Namilae,et al.  Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension , 1998 .

[13]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[14]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[15]  Boris I. Yakobson,et al.  FULLERENE NANOTUBES : C1,000,000 AND BEYOND , 1997 .

[16]  Steven G. Louie,et al.  Fully collapsed carbon nanotubes , 1995, Nature.

[17]  M. Nardelli,et al.  MECHANISM OF STRAIN RELEASE IN CARBON NANOTUBES , 1998 .

[18]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[19]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[20]  Richard D. James,et al.  A scheme for the passage from atomic to continuum theory for thin films, nanotubes and nanorods , 2000 .

[21]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[22]  Huajian Gao,et al.  Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds , 1998 .

[23]  K. Lafdi,et al.  Flexibility of graphene layers in carbon nanotubes , 1995 .

[24]  R. LeSar,et al.  Finite-temperature defect properties from free-energy minimization. , 1989, Physical review letters.

[25]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[26]  F. Milstein Theoretical elastic behaviour of crystals at large strains , 1980 .

[27]  Madhu Menon,et al.  NANOPLASTICITY OF SINGLE-WALL CARBON NANOTUBES UNDER UNIAXIAL COMPRESSION , 1999 .