Genome-wide introgression from a bread wheat × Lophopyrum elongatum amphiploid into wheat

[1]  J. Dvorak,et al.  Recombination between homoeologous chromosomes induced in durum wheat by the Aegilops speltoides Su1-Ph1 suppressor , 2019, Theoretical and Applied Genetics.

[2]  Tongbao Lin,et al.  Transcriptome and physiological analyses for revealing genes involved in wheat response to endoplasmic reticulum stress , 2019, BMC Plant Biology.

[3]  J. King,et al.  Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background , 2019, BMC Plant Biology.

[4]  Céline Scornavacca,et al.  Pervasive hybridizations in the history of wheat relatives , 2018, Science Advances.

[5]  J. Dvorak,et al.  Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B , 2018, Theoretical and Applied Genetics.

[6]  Wei Zhang,et al.  Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum , 2018, Theoretical and Applied Genetics.

[7]  Jinpeng Zhang,et al.  Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome , 2017, Plant biotechnology journal.

[8]  J. Dvorak,et al.  Introgression of the Aegilops speltoides Su1-Ph1 Suppressor into Wheat , 2017, Front. Plant Sci..

[9]  J. King,et al.  Characterisation of , 2017 .

[10]  Karl G. Kugler,et al.  Genome sequence of the progenitor of the wheat D genome Aegilops tauschii , 2017, Nature.

[11]  Wei Zhang,et al.  Meiotic Homoeologous Recombination‐Based Alien Gene Introgression in the Genomics Era of Wheat , 2017 .

[12]  John K. McCooke,et al.  A chromosome conformation capture ordered sequence of the barley genome , 2017, Nature.

[13]  Lingli Dong,et al.  High‐throughput mining of E‐genome‐specific SNPs for characterizing Thinopyrum elongatum introgressions in common wheat , 2017, Molecular ecology resources.

[14]  Simon Griffiths,et al.  Characterization of a Wheat Breeders’ Array suitable for high‐throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum) , 2016, Plant biotechnology journal.

[15]  K. Edwards,et al.  A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum , 2016, Plant biotechnology journal.

[16]  G. Challa,et al.  Recurrence of Chromosome Rearrangements and Reuse of DNA Breakpoints in the Evolution of the Triticeae Genomes , 2016, G3: Genes, Genomes, Genetics.

[17]  J. Batley,et al.  A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome , 2014, Science.

[18]  Morten Lillemo,et al.  Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array , 2014, Plant biotechnology journal.

[19]  J. Anderson,et al.  Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars , 2013, Proceedings of the National Academy of Sciences.

[20]  Mihaela M. Martis,et al.  A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor , 2013, Proceedings of the National Academy of Sciences.

[21]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[22]  F. Han,et al.  Molecular cytogenetic characterization of wheat--Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight. , 2012, Journal of genetics and genomics = Yi chuan xue bao.

[23]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..

[24]  Gonçalo R. Abecasis,et al.  The variant call format and VCFtools , 2011, Bioinform..

[25]  LazebnikJ.,et al.  Characterization of an alien source of resistance to Fusarium head blight transferred to Chinese Spring wheat11ECORC contribution #10-151. , 2011 .

[26]  I. Chelo,et al.  Genotyping with Sequenom. , 2011, Methods in molecular biology.

[27]  J. Dvorak,et al.  Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes , 2010, BMC Genomics.

[28]  M T Clegg,et al.  Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae , 2009, Proceedings of the National Academy of Sciences.

[29]  J. Dvorak,et al.  Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay , 2009, Theoretical and Applied Genetics.

[30]  R. Henry,et al.  A high-throughput assay for rapid and simultaneous analysis of perfect markers for important quality and agronomic traits in rice using multiplexed MALDI-TOF mass spectrometry. , 2009, Plant biotechnology journal.

[31]  Alberto Cenci,et al.  High-throughput single nucleotide polymorphism genotyping in wheat (Triticum spp.). , 2009, Plant biotechnology journal.

[32]  Liuda Ziaugra,et al.  SNP Genotyping Using the Sequenom MassARRAY iPLEX Platform , 2009, Current protocols in human genetics.

[33]  H. Ohm,et al.  Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat , 2006 .

[34]  J. Dvorak,et al.  Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. , 2006, Molecular biology and evolution.

[35]  A. Börner,et al.  Development and QTL assessment of Triticum aestivum–Aegilops tauschii introgression lines , 2006, Theoretical and Applied Genetics.

[36]  D. Lammer,et al.  A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. , 2004, Journal of experimental botany.

[37]  J. Dvorak,et al.  Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination , 1995, Theoretical and Applied Genetics.

[38]  J. Dvorak,et al.  Inferred chromosome morphology of the ancestral genome ofTriticum , 1984, Plant Systematics and Evolution.

[39]  C. Chinoy,et al.  Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye , 2004, Theoretical and Applied Genetics.

[40]  X. Shen,et al.  Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers , 2004, Theoretical and Applied Genetics.

[41]  R. Sears,et al.  Germplasm Enhancement in Winter Wheat × Triticum tauschii Backcross Populations , 1995 .

[42]  R. Koebner,et al.  Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. , 1993, Genome.

[43]  J Dvorák,et al.  The evolution of polyploid wheats: identification of the A genome donor species. , 1993, Genome.

[44]  J. Dvorak,et al.  Methodology of gene transfer by homoeologous recombination into Triticum turgidum: transfer of K+/Na+ discrimination from Triticum aestivum , 1992 .

[45]  J. Omielan,et al.  Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum , 1991 .

[46]  J Dvorák,et al.  Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. E. Miller,et al.  Genome relationship between Thinopyrum bessarabicum and Thinopyrum elongatum , 1989 .

[48]  C. Hsiao,et al.  Genome relationship between Thinopyrum bessarabicum and T. elongatum: revisited , 1989 .

[49]  P. Jauhar A reassessment of genome relationships between Thinopyrum bessarabicum and T. elongatum of the Triticeae , 1988 .

[50]  N. Tuleen,et al.  Isolation and characterization of wheat–Elytrigia elongata chromosome 3E and 5E addition and substitution lines , 1988 .

[51]  J. Dvorak,et al.  On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Dvorak,et al.  Expression of Tolerance of Na+, K+, Mg2+, Cl− and SO2−4 Ions and Sea Water in the Amphiploid of Triticum aestivum ✕ Elytrigia elongata1 , 1986 .

[53]  D. R. Dewey,et al.  Genomically based genera in the perennial Triticeae of North America: identification and membership. , 1985 .

[54]  Á. Löve Conspectus of the Triticeae , 1984, Feddes Repertorium.

[55]  J. Dvorak,et al.  Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia elongata , 1984 .

[56]  J. Dvorak,et al.  High Salt-Tolerance Potential in Wheatgrasses 1 , 1981 .

[57]  J. Dvorak Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. , 1980 .

[58]  E. R. Sears GENETICS SOCIETY OF CANADA AWARD OF EXCELLENCE LECTURE AN INDUCED MUTANT WITH HOMOEOLOGOUS PAIRING IN COMMON WHEAT , 1977 .

[59]  J. Dvorak TRANSFER OF LEAF RUST RESISTANCE FROM AEGILOPS SPELTOIDES TO TRITICUM AESTIVUM , 1977 .

[60]  J. Dvorak HYBRIDS BETWEEN A DIPLOID AGROPYRON ELONGATUM AND AEGILOPS SQUARROSA , 1971 .

[61]  R. Riley,et al.  Genetic Control of the Cytologically Diploid Behaviour of Hexaploid Wheat , 1958, Nature.

[62]  E. R. Sears The aneuploids of common wheat , 1954 .

[63]  G. Stebbins,et al.  Artificial and Natural Hybrids in the Gramineae, Tribe Hordeae. VI. Chromosome Pairing in Secale Cereale x Agropyron Intermedium and the Problem of Genome Homologies in the Triticinae. , 1953, Genetics.

[64]  E. R. Sears,et al.  THE ORIGIN OF TRITICUM SPELTA AND ITS FREE-THRESHING HEXAPLOID RELATIVES , 1946 .

[65]  E. R. Sears,et al.  The origin of Triticum spelta and its free-threshing hexaploid relatives. , 1946, The Journal of heredity.

[66]  H. Kihara Discovery of the DD-analyser, one of the ancestors of Triticum vulgare , 1944 .