Impact of Nonthermal Atmospheric Plasma on the Structure of Cellulose: Access to Soluble Branched Glucans.

We have investigated the effect of non-thermal atmospheric plasma (NTAP) on the structure of microcrystalline cellulose. In particular, by means of different characterization methods, we demonstrate that NTAP promotes the partial cleavage of the β-1,4 glycosidic bond of cellulose leading to the release of short-chain cellodextrins that are reassembled in situ, preferentially at the C6 position, to form branched glucans with either a glucosyl or anhydroglucosyl terminal residue. The ramification of cellulosic chain induced by NTAP yields branched glucans that are soluble in DMSO or in water, thus opening a straightforward access to processable glucans from cellulose. Importantly, the absence of solvent and catalyst considerably facilitates downstream processing as compared to (bio)catalytic processes which typically occur in diluted conditions.

[1]  Robert C. Brown,et al.  Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass , 2014 .

[2]  G. Karlström,et al.  On the mechanism of dissolution of cellulose , 2010 .

[3]  G. A. Jeffrey,et al.  Application of ab initio molecular orbital calculations to the structural moieties of carbohydrates. 3 , 1978 .

[4]  Wojciech Plazinski,et al.  Revision of the GROMOS 56A6CARBO force field: Improving the description of ring‐conformational equilibria in hexopyranose‐based carbohydrates chains , 2016, J. Comput. Chem..

[5]  M. Kitaoka,et al.  Enzymatic synthesis of a library of beta-(1-->4) hetero- D-glucose and D-xylose-based oligosaccharides employing cellodextrin phosphorylase. , 2003, Carbohydrate research.

[6]  E. Hädicke,et al.  Hydrophilie und Lipophilie von Cellulose-Kristalloberflächen , 2001 .

[7]  Joshua H. Truitt,et al.  Mechanocatalysis for biomass-derived chemicals and fuels , 2010 .

[8]  F. Müller-Plathe,et al.  Hydrophilicity and Lipophilicity of Cellulose Crystal Surfaces. , 2001, Angewandte Chemie.

[9]  Matheus Poletto,et al.  Structural Characteristics and Thermal Properties of Native Cellulose , 2013 .

[10]  François Jérôme,et al.  Depolymerization of cellulose to processable glucans by non-thermal technologies , 2016 .

[11]  David Plackett,et al.  Microfibrillated cellulose and new nanocomposite materials: a review , 2010 .

[12]  A. Romano,et al.  Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions , 2012, Cellulose.

[13]  D. Klemm,et al.  Nanocellulosen: eine neue Familie naturbasierter Materialien , 2011 .

[14]  V. Rajendran,et al.  Synergetic effect of DC air plasma and cellulase enzyme treatment on the hydrophilicity of cotton fabric , 2011 .

[15]  François Jérôme,et al.  Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose , 2012 .

[16]  Donald G. Truhlar,et al.  Exo-anomeric effects on energies and geometries of different conformations of glucose and related systems in the gas phase and aqueous solution , 1997 .

[17]  R. Blair,et al.  The scalability in the mechanochemical syntheses of edge functionalized graphene materials and biomass-derived chemicals. , 2014, Faraday discussions.

[18]  A. French,et al.  Conformational analysis of the anomeric forms of sophorose, laminarabiose, and cellobiose using MM3. , 1992, Carbohydrate research.

[19]  António Pedro Souto,et al.  Plasma Treatment in Textile Industry , 2015 .

[20]  Mariko Ago,et al.  Two Different Surface Properties of Regenerated Cellulose due to Structural Anisotropy , 2006 .

[21]  Walter Thiel,et al.  The electronic nature of the 1,4-β-glycosidic bond and its chemical environment: DFT insights into cellulose chemistry. , 2013, Chemistry.

[22]  Ionel Ciucanu,et al.  Elimination of oxidative degradation during the per-O-methylation of carbohydrates. , 2003, Journal of the American Chemical Society.

[23]  V. Box,et al.  The Role of Lone Pair Interactions in the Chemistry of the Monosacceharides. The Aromatic Effects , 1990 .

[24]  Ferdi Schüth,et al.  Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. , 2012, ChemSusChem.

[25]  François Jérôme,et al.  Depolymerization of cellulose assisted by a nonthermal atmospheric plasma. , 2011, Angewandte Chemie.

[26]  I. Tavman,et al.  Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials , 2013 .

[27]  François Jérôme,et al.  Fast and solvent free polymerization of carbohydrates induced by non-thermal atmospheric plasma , 2016 .

[28]  H. Fink,et al.  Cellulose: faszinierendes Biopolymer und nachhaltiger Rohstoff , 2005 .

[29]  S. Rimpelová,et al.  Effect of plasma treatment on cellulose fiber , 2013, Cellulose.

[30]  T. Heinze,et al.  Cellulose: Chemistry of Cellulose Derivatization , 2012 .

[31]  Takeshi Aoyagi,et al.  Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. , 2009, Carbohydrate research.

[32]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[33]  Ashlie Martini,et al.  Cellulose nanomaterials review: structure, properties and nanocomposites. , 2011, Chemical Society reviews.

[34]  F. Michon,et al.  Addition of glycerol for improved methylation linkage analysis of polysaccharides. , 2006, Carbohydrate research.

[35]  Dieter Klemm,et al.  Nanocelluloses: a new family of nature-based materials. , 2011, Angewandte Chemie.

[36]  Bernd Meyer,et al.  Further justification for the exo-anomeric effect. Conformational analysis based on nuclear magnetic resonance spectroscopy of oligosaccharides , 1982 .

[37]  Vernon G. S. Box,et al.  The role of lone pair interactions in the chemistry of the monosaccharides. Stereo-electronic effects in unsaturated monosaccharides , 1991 .

[38]  O. Hinojosa,et al.  Characterization and use of radio frequency plasma‐activated natural polymers , 1979 .

[39]  G. Sassaki,et al.  Rapid synthesis of partially O-methylated alditol acetate standards for GC-MS: some relative activities of hydroxyl groups of methyl glycopyranosides on Purdie methylation. , 2005, Carbohydrate research.

[40]  M. Himmel,et al.  Simulation studies of the insolubility of cellulose. , 2010, Carbohydrate research.

[41]  Kwang Ho Kim,et al.  Pyrolytic sugars from cellulosic biomass. , 2012, ChemSusChem.

[42]  J. Simons,et al.  Sensing the anomeric effect in a solvent-free environment , 2011, Nature.

[43]  F. Schüth,et al.  Mechanocatalytic Depolymerization of Lignocellulose Performed on Hectogram and Kilogram Scales , 2015 .

[44]  Masayuki,et al.  Spectrochemistry of Polycarbohydrate Free Radicals Generated by Argon Plasmolysis : Effect of Tertiary Structure on Free Radical Formation. , 1994 .

[45]  R. Atalla,et al.  Band assignments in the Raman spectra of celluloses , 1987 .

[46]  Y. Yamauchi,et al.  Nature of mechanoradical formation of substituted celluloses as studied by electron spin resonance. , 2004, Chemical & pharmaceutical bulletin.

[47]  B. Svensson,et al.  Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum. , 2010, Biochimie.

[48]  Paul Langan,et al.  Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction. , 2002, Journal of the American Chemical Society.

[49]  F. Jérôme,et al.  Mechanocatalytic deconstruction of cellulose: an emerging entry into biorefinery. , 2013, ChemSusChem.