About non-monotony in Boolean automata networks

This paper aims at presenting motivations and first results of a prospective theoretical study on the role of non-monotone interactions in the modelling process of biological regulation networks. Focusing on discrete models of these networks, namely, Boolean automata networks, we propose to analyse the contribution of non-monotony to the diversity and complexity in their dynamical behaviours. More precisely, in this paper, we start by detailing some motivations, both mathematical and biological, for our interest in non-monotony, and we discuss how it may account for phenomena that cannot be produced by monotony only. Then, to build some understanding in this direction, we show some preliminary results on the dynamical behaviours of some specific non-monotone Boolean automata networks called xor circulant networks.

[1]  Eric Goles Ch.,et al.  Decreasing energy functions as a tool for studying threshold networks , 1985, Discret. Appl. Math..

[2]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[3]  Jacques Demongeot,et al.  Combinatorics of Boolean automata circuits dynamics , 2012, Discret. Appl. Math..

[4]  Eric Goles,et al.  Neural Networks Dynamics , 1989, NATO Neurocomputing.

[5]  E. Álvarez-Buylla,et al.  Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. , 1998, Journal of theoretical biology.

[6]  Luis Mendoza,et al.  A robust model to describe the differentiation of T-helper cells , 2010, Theory in Biosciences.

[7]  R. Laubenbacher,et al.  Boolean Monomial Dynamical Systems , 2004, math/0403166.

[8]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of Molecular Biology.

[9]  François Robert,et al.  Discrete iterations - a metric study , 1986, Springer series in computational mathematics.

[10]  Eric Goles Ch.,et al.  Block-sequential update schedules and Boolean automata circuits , 2010, Automata.

[11]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[12]  François Jacob,et al.  Regulation of Repressor Expression in λ , 1970 .

[13]  Eric Goles Ch.,et al.  Discrete State Neural Networks and Energies , 1997, Neural Networks.

[14]  Jacques Monod,et al.  On the Regulation of Gene Activity , 1961 .

[15]  Paul Cull Linear analysis of switching nets , 2004, Kybernetik.

[16]  Eric Goles Ch.,et al.  Disjunctive networks and update schedules , 2012, Adv. Appl. Math..

[17]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[18]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[19]  Eric Goles Ch.,et al.  Complexity of Langton's ant , 2002, Discret. Appl. Math..

[20]  Pekka Orponen,et al.  Computing with Truly Asynchronous Threshold Logic Networks , 1997, Theor. Comput. Sci..

[21]  Adrien Richard Local negative circuits and fixed points in non-expansive Boolean networks , 2011, Discret. Appl. Math..

[22]  René Thomas Regulatory networks seen as asynchronous automata: A logical description , 1991 .

[23]  Adrien Richard,et al.  Negative circuits and sustained oscillations in asynchronous automata networks , 2009, Adv. Appl. Math..

[24]  L. Goddard Information Theory , 1962, Nature.

[25]  R. Thomas,et al.  Boolean formalization of genetic control circuits. , 1973, Journal of theoretical biology.

[26]  Julio Aracena,et al.  Combinatorics on update digraphs in Boolean networks , 2011, Discret. Appl. Math..

[27]  Eric Goles Ch.,et al.  Comportement periodique des fonctions a seuil binaires et applications , 1981, Discret. Appl. Math..

[28]  François Robert Les systèmes dynamiques discrets , 1995 .

[29]  Eric Goles Ch.,et al.  On the robustness of update schedules in Boolean networks , 2009, Biosyst..

[30]  Jacques Demongeot,et al.  Interaction Motifs in Regulatory Networks and Structural Robustness , 2008, 2008 International Conference on Complex, Intelligent and Software Intensive Systems.

[31]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Denis Thieffry,et al.  Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis , 1999, Bioinform..

[33]  Stuart A. Kauffman,et al.  ORIGINS OF ORDER , 2019, Origins of Order.

[34]  Julien Gagneur,et al.  Modular decomposition of protein-protein interaction networks , 2004, Genome Biology.

[35]  Hanna Klaudel,et al.  Analysis of Modular Organisation of Interaction Networks Based on Asymptotic Dynamics , 2011, CMSB.

[36]  Mathilde Noual Synchronism vs Asynchronism in Boolean networks , 2011, ArXiv.

[37]  Automata Networks , 1986, Lecture Notes in Computer Science.

[38]  Pascal Koiran Puissance de calcul des réseaux de neurones artificiels , 1993 .

[39]  Denis Thieffry,et al.  Dynamical behaviour of biological regulatory networks—II. Immunity control in bacteriophage lambda , 1995 .

[40]  Hélène Paugam-Moisy,et al.  Complexity Issues in Neural Network Computations , 1992, LATIN.

[41]  Adrien Richard,et al.  Necessary conditions for multistationarity in discrete dynamical systems , 2007, Discret. Appl. Math..

[42]  James Bonner,et al.  Current Topics in Developmental Biology, Vol. 2 , 1968 .

[43]  René A. Hernández Toledo Linear Finite Dynamical Systems , 2005 .

[44]  Adrien Richard,et al.  R. Thomas' Modeling of Biological Regulatory Networks: Introduction of Singular States in the Qualitative Dynamics , 2005, Fundam. Informaticae.

[45]  B. Elspas,et al.  The Theory of Autonomous Linear Sequential Networks , 1959 .

[46]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[47]  Eric Goles Ch.,et al.  Fixed points and maximal independent sets in AND-OR networks , 2004, Discret. Appl. Math..

[48]  V. Cambiazo,et al.  Regulatory network for cell shape changes during Drosophila ventral furrow formation. , 2006, Journal of theoretical biology.

[49]  Denis Thieffry,et al.  Qualitative Modelling of Genetic Networks: From Logical Regulatory Graphs to Standard Petri Nets , 2004, ICATPN.

[50]  Eric Goles Ch.,et al.  On limit cycles of monotone functions with symmetric connection graph , 2004, Theor. Comput. Sci..

[51]  Denis Thieffry,et al.  A description of dynamical graphs associated to elementary regulatory circuits , 2003, ECCB.

[52]  Eric Goles Ch.,et al.  Comparison between parallel and serial dynamics of Boolean networks , 2008, Theor. Comput. Sci..

[53]  El Houssine Snoussi Structure et comportement itératif de certains modèles discrets , 1980 .

[54]  J. Demongeot,et al.  Robustness in Regulatory Networks: A Multi-Disciplinary Approach , 2008, Acta biotheoretica.

[55]  Pekka Orponen,et al.  On the Computational Complexity of Analyzing Hopfield Nets , 1989, Complex Syst..

[56]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[57]  Abdul Salam Jarrah,et al.  The Dynamics of Conjunctive and Disjunctive Boolean Network Models , 2010, Bulletin of mathematical biology.

[58]  Elizabeth-sharon Fung,et al.  A gene regulatory network armature for T-lymphocyte specification , 2008 .

[59]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Sylvain Sené,et al.  Towards a theory of modelling with Boolean automata networks - I. Theorisation and observations , 2011, ArXiv.

[61]  René Thomas On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations , 1981 .

[62]  J. Demongeot,et al.  Attraction Basins as Gauges of Robustness against Boundary Conditions in Biological Complex Systems , 2010, PloS one.

[63]  Denis Thieffry,et al.  Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework , 2008, Adv. Appl. Math..