Accumulations of T-points in a model for solitary pulses in an excitable reaction-diffusion medium

We consider a family of differential equations that describes traveling waves in a reaction-diffusion equation modeling oxidation of carbon oxide on a platinum surface, near the onset of spatio-temporal chaos. The organizing bifurcation for the bifurcation structure with small carbon oxide pressures, turns out to be a codimension 3 bifurcation involving a homoclinic orbit to an equilibrium undergoing a transcritical bifurcation. We show how infinitely many T-point bifurcations of multi loop heteroclinic cycles occur in the unfolding.

[1]  Hiroshi Kokubu,et al.  Homoclinic-Doubling Cascades , 2001 .

[2]  N. Kopell,et al.  Construction of the Fitzhugh-Nagumo Pulse Using Differential Forms , 1991 .

[3]  Markus Bär,et al.  Spiral waves in a surface reaction: Model calculations , 1994 .

[4]  Bär,et al.  Statistics of Topological Defects and Spatiotemporal Chaos in a Reaction-Diffusion System. , 1995, Physical review letters.

[5]  M. Eiswirth,et al.  Turbulence due to spiral breakup in a continuous excitable medium. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  V. V. Bykov,et al.  The bifurcations of separatrix contours and chaos , 1993 .

[7]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[8]  Ioannis G. Kevrekidis,et al.  Numerical bifurcation and stability analysis of solitary pulses in an excitable reaction—diffusion medium , 1999 .

[9]  Colin Sparrow,et al.  T-points: A codimension two heteroclinic bifurcation , 1986 .

[10]  M. Bär,et al.  Traveling waves in the CO oxidation on Pt(110): Theory , 1992 .

[11]  Mario A. Natiello,et al.  Homoclinic and Heteroclinic Bifurcations Close to a Twisted Heteroclinic Cycle , 1998 .

[12]  B. Deng,et al.  Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .

[13]  Y. Ilyashenko,et al.  Finitely-smooth normal forms of local families of diffeomorphisms and vector fields , 1991 .

[14]  Thomas M. Antonsen,et al.  Modeling fractal entrainment sets of tracers advected by chaotic temporally irregular fluid flows using random maps , 1997 .

[15]  H. Engel,et al.  Chemical turbulence and standing waves in a surface reaction model: The influence of global coupling and wave instabilities. , 1994, Chaos.

[16]  Bernd Krauskopf,et al.  Resonant Homoclinic Flip Bifurcations , 2000 .

[17]  Björn Sandstede,et al.  Gluing unstable fronts and backs together can produce stable pulses , 2000 .

[18]  S. Chow,et al.  Bifurcation of a homoclinic orbit with a saddle-node equilibrium , 1990 .

[19]  Katharina Krischer,et al.  Oscillatory CO oxidation on Pt(110) : modeling of temporal self-organization , 1992 .

[20]  D. Terman,et al.  The bifurcation homoclinic and periodic orbits from two heteroclinic orbits , 1990 .

[21]  Markus Bär,et al.  Pulse bifurcation and transition to spatiotemporal chaos in an excitable reaction-diffusion model , 1997 .

[22]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[23]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[24]  Markus Bär,et al.  ANOMALOUS DISPERSION AND PULSE INTERACTION IN AN EXCITABLE SURFACE REACTION , 1999 .