The spatial resolutions of the apposition compound eye and its neuro-sensory feature detectors: observation versus theory.

For 100 years three ideas dominated efforts to understand the apposition compound eye. In Müller's theory, the eye viewed the panorama through an array of little windows without overlaps and without gaps, with no details within windows. Spatial resolution then depended on the interommatidial angle (Deltaphi) and the number of ommatidia. In the second proposal, the insect detected the temporal modulation of the light, which was limited by the aperture of the lens and the wavelength, assuming good focus. Modulation is the change of intensity in the receptor, usually caused by motion of a spatial contrast in the stimulus. Thirdly, motion was detected from the successive temporal modulations at adjacent visual axes. Recently, two more principles arose. The light-sensitive elements, called rhabdomeres, project through the nodal point of the lens to the outside world, and the resolution was limited by their grain size, like the pixels in a digital camera. Finally, detection of contrast and colour was limited by the signal/noise ratio (SNR) which was improved by brighter light and more visual pigment. These five physical principles provide satisfying explanations of eye function but they all originated from theory. Actual measurements of resolution depend on the operation of the test. The visual system of the honeybee recognizes a limited variety of simple cues, but there is no evidence that the pattern of ommatidial stimulation is re-assembled, or even seen. The known cues are: the temporal modulation of groups of receptors, the direction and angular velocity of motion, some measure of the spatial disruption of the pattern or the length of edge (related to spatial frequency and contrast), colour, the intensity, the position of the centre and the size of large well-separated areas of black or colour, the angle of orientation of a bar or grating, radial or tangential edges, and bilateral symmetry. Neurons connected to more than two adjacent ommatidia collaborate in the detection of cues, and the resolution depends on the neuro-sensory feature detectors at work at the time. Although some behavioural and electrophysiological measurements give a spatial resolution similar to the interommatidial angle, different spatial properties of neuro-sensory detectors predominate at different light intensities and with a diurnal rhythm. During the long history of this topic, the belief that the resolution ought to be Deltaphi has frequently been overturned by experimental measurement.

[1]  Allan W. Snyder,et al.  Spatial information capacity of compound eyes , 2004, Journal of comparative physiology.

[2]  H. Autrum,et al.  Die Feinstruktur im Auge der Biene bei Hell- und Dunkeladaptation , 1972, Journal of comparative physiology.

[3]  Mandyam V. Srinivasan,et al.  Temporal acuity of honeybee vision: behavioural studies using moving stimuli , 2004, Journal of Comparative Physiology A.

[4]  G. Horridge,et al.  Pattern discrimination by the honeybee: disruption as a cue , 1997, Journal of Comparative Physiology A.

[5]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[6]  S. Exner Die Physiologie der facettirten Augen von Krebsen und Insecten , 1891 .

[7]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[8]  J. H. van Hateren,et al.  Pattern recognition in bees: orientation discrimination , 1990, Journal of Comparative Physiology A.

[9]  F. Zettler,et al.  Neural principles in vision , 1976 .

[10]  G. A. Horridge,et al.  Electrophysiological investigation of the optics of the locust retina , 1967, Zeitschrift für vergleichende Physiologie.

[11]  E. Wolf THE VISUAL INTENSITY DISCRIMINATION OF THE HONEY BEE , 1933, The Journal of general physiology.

[12]  A. Horridge Pattern Vision of the Honeybee (Apis mellifera): Blue and Green Receptors in the Discrimination of Translocation , 2000, Neurobiology of Learning and Memory.

[13]  H. Barlow The Size of Ommatidia in Apposition Eyes , 1952 .

[14]  John Thorson,et al.  Small-signal analysis of a visual reflex in the locust , 1966, Kybernetik.

[15]  M. Lehrer,et al.  Cognitive Ecology of Pollination: Honeybee vision and floral displays:from detection to close-up recognition , 2001 .

[16]  M. Giurfa,et al.  The angular range of achromatic target detection by honey bees , 1998, Journal of Comparative Physiology A.

[17]  S. Laughlin Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly's eye , 1994, Progress in Retinal and Eye Research.

[18]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[19]  Rudolf Jander,et al.  Das strauch-spezifische visuelle Perceptor-System der Stabheuschrecke (Carausius morosus) , 1970, Zeitschrift für vergleichende Physiologie.

[20]  A Horridge Seven experiments on pattern vision of the honeybee, with a model , 2000, Vision Research.

[21]  M. Srinivasan,et al.  Motion cues provide the bee's visual world with a third dimension , 1988, Nature.

[22]  M. Vorobyev,et al.  Receptor noise as a determinant of colour thresholds , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[24]  T. Collett,et al.  Approaching and departing bees learn different cues to the distance of a landmark , 1994, Journal of Comparative Physiology A.

[25]  M. Srinivasan,et al.  Spatial processing of visual information in the movement-detecting pathway of the fly , 2004, Journal of comparative physiology.

[26]  Lotte Gavel,et al.  Die „kritische Streifenbreite“ als Mass der Sehschärfe bei Drosophila melanogaster , 2004, Zeitschrift für vergleichende Physiologie.

[27]  M. Hertz Die Organisation des optischen Feldes bei der Biene. I. , 2004, Zeitschrift für vergleichende Physiologie.

[28]  G. Horridge The Compound eye and vision of insects , 1975 .

[29]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[30]  Doekele G. Stavenga,et al.  Pseudopupils of Compound Eyes , 1979 .

[31]  M. Friedlaender Zur Bedeutung des Fluglochs im optischen Feld der Biene bei senkrechter Dressuranordnung , 1931, Zeitschrift für vergleichende Physiologie.

[32]  R. Gegear,et al.  Behavioural assessment of visual acuity in bumblebees (Bombus impatiens). , 2001, The Journal of experimental biology.

[33]  H B BARLOW,et al.  Visual Resolution and the Diffraction Limit , 1965, Science.

[34]  Resolution of the locust eye measured by rotation of radial striped patterns , 1969, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  A. Mallock I. Insect sight and the defining power of composite eyes , 1894, Proceedings of the Royal Society of London.

[36]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[37]  Roger C. Hardie,et al.  Fly photoreceptors. III. Angular sensitivity as a function of wavelength and the limits of resolution , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  A. Horridge Pattern vision of the honeybee (Apis mellifera). What is an oriented edge? , 2000, Journal of Comparative Physiology A.

[39]  R. Hooke Micrographia: Or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses With Observations and Inquiries Thereupon , 2003 .

[40]  Miriam Lehrer,et al.  How bees use peripheral eye regions to localize a frontally positioned target , 1990, Journal of Comparative Physiology A.

[41]  J. Palka,et al.  Diffraction and Visual Acuity of Insects , 1965, Science.

[42]  M. Srinivasan,et al.  Visual Discrimination of Pattern Orientation by Honeybees: Performance and Implications for `Cortical' Processing , 1994 .

[43]  J. L. Gould How Bees Remember Flower Shapes , 1985, Science.

[44]  R. Wehner Spatial Vision in Arthropods , 1981 .

[45]  Pattern vision of the honeybee (Apis mellifera): the effect of pattern on the discrimination of location , 1999, Journal of Comparative Physiology A.

[46]  L. Marcelja,et al.  A 24-HOUR CYCLE IN SINGLE LOCUST AND MANTIS PHOTORECEPTORS , 1981 .

[47]  Horridge Visual discrimination of radial cues by the honeybee (Apis mellifera). , 2000, Journal of insect physiology.

[48]  Kuno Kirschfeld,et al.  The Dorsal Compound Eye of Simuliid Flies: , 1976 .

[49]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[50]  M. F. Land,et al.  Maps of the acute zones of fly eyes , 1985, Journal of Comparative Physiology A.

[51]  M. Lehrer,et al.  Spatial acuity of honeybee vision and its spectral properties , 2004, Journal of Comparative Physiology A.

[52]  G A Horridge,et al.  The separation of visual axes in apposition compound eyes. , 1978, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[53]  H. W. Meyer Geometrie und funktionelle Spezialisierung des optischen Abtastrasters beim Bachwasserläufer (Velia caprai) , 1974, Journal of comparative physiology.

[54]  Mandyam V. Srinivasan,et al.  The world as the insect sees it , 1984 .

[55]  I. Meinertzhagen,et al.  Synaptic organization in the fly's optic lamina: few cells, many synapses and divergent microcircuits. , 2001, Progress in brain research.

[56]  Herbert Baumgärtner,et al.  Der Formensinn und die Sehschärfe der Bienen , 1928, Zeitschrift für vergleichende Physiologie.

[57]  Michael F. Land THE RESOLUTION OF INSECT COMPOUND EYES , 1997 .

[58]  David S. Williams Changes of photoreceptor performance associated with the daily turnover of photoreceptor membrane in locusts , 1983, Journal of comparative physiology.

[59]  EXPERIMENTS ON PATTERN-VISION OF THE HONEY BEE , 1911 .

[60]  M. F. Land,et al.  Fundamental differences in the optical structure of the eyes of nocturnal and diurnal mosquitoes , 1999, Journal of Comparative Physiology A.

[61]  S. Laughlin,et al.  Temperature and the temporal resolving power of fly photoreceptors , 2000, Journal of Comparative Physiology A.

[62]  Mandyam V. Srinivasan,et al.  Honeybee navigation: properties of the visually driven `odometer' , 2003, Journal of Experimental Biology.

[63]  A. Horridge What the honeybee sees: a review of the recognition system of Apis mellifera , 2005 .

[64]  D. G. Stavenga,et al.  Angular and spectral sensitivity of fly photoreceptors. III. Dependence on the pupil mechanism in the blowfly Calliphora , 2004, Journal of Comparative Physiology A.

[65]  M. Sanders Handbook of Sensory Physiology , 1975 .

[66]  C. David,et al.  Optomotor control of speed and height by free-flying Drosophila. , 1979, The Journal of experimental biology.

[67]  Martin Wilson,et al.  Angular sensitivity of light and dark adapted locust retinula cells , 1975, Journal of comparative physiology.

[68]  M. V. Srinivasan,et al.  Pattern recognition in honeybees: chromatic properties of orientation analysis , 1996, Journal of Comparative Physiology A.

[69]  S. Marčelja Optimal lateral interactions in a compound eye , 1979, Journal of comparative physiology.

[70]  C. Voss,et al.  Über das Formensehen der roten Waldameise (Formica rufa-Gruppe) , 1967, Zeitschrift für vergleichende Physiologie.

[71]  G. Horridge Review lecture: Apposition eyes of large diurnal insects as organs adapted to seeing , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[72]  Rüdiger Wehner,et al.  Dorsoventral asymmetry in the visual field of the bee,Apis mellifica , 1972, Journal of comparative physiology.

[73]  Samuel Rossel,et al.  Regional differences in photoreceptor performance in the eye of the praying mantis , 1979, Journal of comparative physiology.

[74]  Siegmund Exner,et al.  The physiology of the compound eyes of insects and crustaceans : a study , 1989 .

[75]  A. Snyder,et al.  Transduction as a limitation on compound eye function and design , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[76]  Adrian Horridge Visual resolution of the orientation cue by the honeybee (Apis mellifera). , 2003, Journal of insect physiology.

[77]  S. B. Laughlin,et al.  Angular sensitivity of the retinula cells of dark-adapted worker bee , 1971, Zeitschrift für vergleichende Physiologie.

[78]  Martin Giurfa,et al.  Local-feature assembling in visual pattern recognition and generalization in honeybees , 2004, Nature.

[79]  R. Jander,et al.  Allometry and resolution of bee eyes (Apoidea). , 2002, Arthropod structure & development.

[80]  Hansjürgen Dahmen,et al.  Eye specialisation in waterstriders: an adaptation to life in a flat world , 1991, Journal of Comparative Physiology A.

[81]  Erich Buchner,et al.  Visual movement detection under light- and dark-adaptation in the fly,Musca domestica , 1979, Journal of comparative physiology.

[82]  G Adrian Horridge Visual resolution of gratings by the compound eye of the bee Apis mellifera , 2003, Journal of Experimental Biology.

[83]  The Principles of Insect Physiology. , 1966 .

[84]  Carl von Hess,et al.  Vergleichende Physiologie des Gesichtssinnes , 1912 .

[85]  A. Snyder,et al.  The Relationship between Visual Acuity and Illumination in the Fly, Lucilia sericata , 1978, Zeitschrift fur Naturforschung. Section C, Biosciences.

[86]  George Wald,et al.  THE VISUAL ACUITY AND INTENSITY DISCRIMINATION OF DROSOPHILA , 1934, The Journal of general physiology.

[87]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[88]  G. Rathbun The social structure and ecology of elephant-shrews , 1979 .

[89]  Roger C. Hardie,et al.  Electrophysiological analysis of fly retina. I: Comparative properties of R1-6 and R 7 and 8 , 1979, Journal of comparative physiology.

[90]  W. T. Catton,et al.  A diffraction theory of insect vision. I. An experimental investigation of visual acuity and image formation in the compound eyes of three species of insects , 1962, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[91]  G. Horridge,et al.  Discrimination of single bars by the honeybee (Apis mellifera) , 2003, Vision Research.

[92]  D. G. Stavenga,et al.  Angular sensitivity of blowfly photoreceptors: broadening by artificial electrical coupling , 1987, Journal of Comparative Physiology A.

[93]  I. Meinertzhagen,et al.  The regulation of circadian rhythms in the fly’s visual system: involvement of FMRFamide-like neuropeptides and their relationship to pigment dispersing factor in Musca domestica and Drosophila melanogaster , 2003, Neuropeptides.

[94]  H. W. Meyer Visuelle Schlüsselreize für die Auslösung der Beutefanghandlung beim Bachwasserläufer Velia caprai (Hemiptera, Heteroptera) , 1971, Zeitschrift für vergleichende Physiologie.

[95]  A. Horridge Visual discrimination by the honeybee (Apis mellifera): the position of the common centre as the cue , 2003 .

[96]  Roger C. Hardie,et al.  The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.

[97]  George Adrian Horridge,et al.  Pattern recognition in bees : size of regions in spatial layout , 1992 .

[98]  A. C. Ioannides,et al.  The organization of visual fields in the hemipteran acone eye , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[99]  Randolf Menzel,et al.  Colour thresholds and receptor noise: behaviour and physiology compared , 2001, Vision Research.

[100]  S. Laughlin,et al.  Photoreceptor performance and the co-ordination of achromatic and chromatic inputs in the fly visual system , 2000, Vision Research.

[101]  Kuno Kirschfeld,et al.  The Resolution of Lens and Compound Eyes , 1976 .

[102]  G. A. Horridge,et al.  The effect of complexity on the discrimination of oriented bars by the honeybee (Apis mellifera) , 2003, Journal of Comparative Physiology A.

[103]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[104]  Mandyam V. Srinivasan,et al.  Temporal acuity of honeybee vision: behavioural studies using flickering stimuli , 1984 .

[105]  Eric J. Warrant,et al.  Neural Image Enhancement Allows Honeybees to See at Night , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[106]  George Adrian Horridge,et al.  Bees can combine range and visual angle to estimate absolute size , 1992 .

[107]  S. Hecht,et al.  THE VISUAL ACUITY OF THE HONEY BEE , 1929, The Journal of general physiology.

[108]  E. Wolf AN ANALYSIS OF THE VISUAL CAPACITY OF THE BEE'S EYE , 1935 .

[109]  B. A. Cartwright,et al.  Short Communications: How Honey-Bees Know their Distance from a Near-By Visual Landmark , 1979 .

[110]  K. Kirschfeld,et al.  Lateral Inhibition in the Com pound Eye of the Fly, Musca , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[111]  Adrian Horridge The visual system of the honeybee (Apis mellifera): the maximum length of the orientation detector. , 2003, Journal of insect physiology.

[112]  D. Burkhardt,et al.  Das Sehfeld einzelner Sehzellen: Eine Richtigstellung , 1965, Zeitschrift für vergleichende Physiologie.

[113]  E. Wolf,et al.  THE DARK ADAPTATION OF THE EYE OF THE HONEY BEE , 1935, The Journal of general physiology.

[114]  Peter Elias,et al.  Predictive coding-I , 1955, IRE Trans. Inf. Theory.

[115]  J. A. Coles,et al.  The perception of small objects by the drone honeybee , 1993, Journal of Comparative Physiology A.

[116]  R. Menzel,et al.  Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts , 1996, Journal of Comparative Physiology A.

[117]  R. Schmidt,et al.  Progress in Sensory Physiology , 1991, Progress in Sensory Physiology.

[118]  R. B. Pinter,et al.  Inhibition and Excitation in the Locust DCMD Receptive Field: Spatial Frequency, Temporal and Spatial Characteristics , 1979 .

[119]  B. Ronacher,et al.  Äquivalenz zwischen größen- und helligkeitsunterschieden im rahmen der visuellen wahrnehmung der honigbiene , 1979, Biological Cybernetics.

[120]  Michael F. Land,et al.  Variations in the Structure and Design of Compound Eyes , 1989 .

[121]  Jochen Zeil,et al.  Sexual dimorphism in the visual system of flies: The compound eyes and neural superposition in bibionidae (Diptera) , 1983, Journal of comparative physiology.

[122]  K. Frisch Der Farbensinn und Formensinn der Biene , 1914 .

[123]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[124]  M. Lehrer,et al.  Detection of model flowers by honeybees: The role of chromatic and achromatic contrast , 1995, Naturwissenschaften.

[125]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[126]  H. Grenacher Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insecten und Crustaceen , 1879 .

[127]  S B Laughlin,et al.  Single photon signals in fly photoreceptors and first order interneurones at behavioral threshold. , 1981, The Journal of physiology.

[128]  The effect of target orientation on the visual acuity and the spatial frequency response of the locust eye. , 1999, Journal of insect physiology.

[129]  S. W. Zhang,et al.  Is pattern vision in insects mediated by 'cortical' processing? , 1993, Nature.

[130]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[131]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[132]  N. J. Bidwell,et al.  Possible functions of a population of descending neurons in the honeybee's visuo-motor pathway , 1993 .

[133]  J. H. van Hateren,et al.  Angular sensitivity of blowfly photoreceptors: intracellular measurements and wave-optical predictions , 1984, Journal of Comparative Physiology A.

[134]  Peter Kunze,et al.  Untersuchung des Bewegungssehens fixiert fliegender Bienen , 1961, Zeitschrift für vergleichende Physiologie.

[135]  A. Snyder Physics of Vision in Compound Eyes , 1979 .