Isoperimetric inequalities for nilpotent groups

AbstractWe prove that every finitely generated nilpotent group of class c admits a polynomial isoperimetric function of degree c + 1 and a linear upper bound on its filling length function.

[1]  P. Pansu Croissance des boules et des géodésiques fermées dans les nilvariétés , 1983, Ergodic Theory and Dynamical Systems.

[2]  Isoperimetric functions of finitely generated nilpotent groups , 1999 .

[3]  Charles F. Miller,et al.  Isoperimetric inequalities and the homology of groups , 1993 .

[4]  Jean-Camille Birget,et al.  Isoperimetric and isodiametric functions of groups , 1998 .

[5]  S. M. Gersten,et al.  Geometric Group Theory: Isoperimetric and Isodiametric Functions of Finite Presentations , 1993 .

[6]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[7]  Some Isoperimetric Inequalities for Kernels of Free Extensions , 2002 .

[8]  T. Riley Higher connectedness of asymptotic cones , 2003 .

[9]  S. J. Pride Geometric Methods in Combinatorial Semigroup Theory , 1995 .

[10]  Derek F. Holt Decision Problems in Finitely Presented Groups , 1999 .

[11]  B. A. F. Wehrfritz,et al.  Infinite linear groups , 1973 .

[12]  Martin R. Bridson On the geometry of normal forms in discrete groups , 1993 .

[13]  S. M. Gersten,et al.  Dehn functions and l1-norms of nite presentations , 1989 .

[14]  C. Pittet,et al.  Isoperimetric Inequalities for Homogeneous Nilpotent Groups , 1995 .

[15]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[16]  An isoperimetric inequality for the Heisenberg groups , 1998 .

[17]  T. Riley,et al.  Filling Length in Finitely Presentable Groups , 2000 .

[18]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .