The manipulation and assembly of CuO nanorods with line optical tweezers

We present a simple technique for manipulating and assembling one-dimensional (1D) CuO nanorods. Our technique exploits the optical trapping ability of line optical tweezers to trap, manipulate and rotate nanorods without physical contact. With this simple and versatile method, nanorods can be readily arranged into interesting configurations. The optical lin et weezers could also be used to manipulate an individual nanorod across two conducting electrodes. This work demonstrates the potential of optical manipulation and assembly of 1D nanostructures into useful nanoelectronics devices. M This article features online multimedia enhancements (Some figures in this article are in colour only in the electronic version)

[1]  D. Grier A revolution in optical manipulation , 2003, Nature.

[2]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[3]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[4]  William E. Buhro,et al.  Electrical transport in boron nanowires , 2003 .

[5]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[6]  David Grier,et al.  Processing carbon nanotubes with holographic optical tweezers. , 2004, Optics express.

[7]  Wendy C. Crone,et al.  Magnetic Manipulation of Copper−Tin Nanowires Capped with Nickel Ends , 2004 .

[8]  G. V. Shivashankar,et al.  Development of an optical tweezer combined with micromanipulation for DNA and protein nanobioscience , 2002 .

[9]  F. A. Benko,et al.  A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO , 1982 .

[10]  J. Crocker,et al.  ENTROPIC ATTRACTION AND REPULSION IN BINARY COLLOIDS PROBED WITH A LINE OPTICAL TWEEZER , 1999 .

[11]  P. A. Smith,et al.  Electric-field assisted assembly and alignment of metallic nanowires , 2000 .

[12]  Samarendra K. Mohanty,et al.  Controlled rotation of biological microscopic objects using optical line tweezers , 2003, Biotechnology Letters.

[13]  Younan Xia,et al.  CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air , 2002 .

[14]  J. Meiners,et al.  Particle transport in asymmetric scanning-line optical tweezers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  John A. Woollam,et al.  Giant photoresistivity and optically controlled switching in self-assembled nanowires , 2001 .

[16]  K. Gingerich,et al.  All-electron ab initio investigations of the electronic states of the NiC molecule , 1999 .

[17]  Yihong Wu,et al.  Investigation of individual CuO nanorods by polarized micro-Raman scattering , 2004 .

[18]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[19]  Michael D. Lynch,et al.  Organizing Carbon Nanotubes with Liquid Crystals , 2002 .

[20]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[21]  Pal Ormos,et al.  Orientation of flat particles in optical tweezers by linearly polarized light. , 2003, Optics express.

[22]  F. Favier,et al.  Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays , 2001, Science.

[23]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[24]  Miles J Padgett,et al.  Rotational control within optical tweezers by use of a rotating aperture. , 2002, Optics letters.

[25]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[26]  Lars Samuelson,et al.  AFM manipulation of carbon nanotubes: realization of ultra-fine nanoelectrodes , 2002 .

[27]  Peter C. Searson,et al.  Magnetic trapping and self-assembly of multicomponent nanowires , 2002 .

[28]  Peidong Yang,et al.  Microchannel Networks for Nanowire Patterning , 2000 .