50 Years of the Golomb–Welch Conjecture
暂无分享,去创建一个
[1] Eitan Yaakobi,et al. Error-Correction of Multidimensional Bursts , 2007, IEEE Transactions on Information Theory.
[2] Tuvi Etzion,et al. Product Constructions for Perfect Lee Codes , 2011, IEEE Transactions on Information Theory.
[3] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[4] Henry Cohn,et al. The sphere packing problem in dimension 8The sphere packing problem in dimension 8 , 2016, 1603.04246.
[5] Mihail N. Kolountzakis. The Study of Translational Tiling with Fourier Analysis , 2004 .
[6] Peter Horák,et al. Tiling R5 by Crosses , 2014, Discret. Comput. Geom..
[7] Bruce M. Kapron,et al. The Cayley Graphs Associated With Some Quasi-Perfect Lee Codes Are Ramanujan Graphs , 2016, IEEE Transactions on Information Theory.
[8] Reginaldo Palazzo Júnior,et al. Quasi-Perfect Codes From Cayley Graphs Over Integer Rings , 2013, IEEE Transactions on Information Theory.
[9] J. Lagarias,et al. Structure of tilings of the line by a function , 1996 .
[10] Italo J. Dejter,et al. A generalization of Lee codes , 2014, Des. Codes Cryptogr..
[11] Peter Horák,et al. Diameter Perfect Lee Codes , 2012, IEEE Transactions on Information Theory.
[12] Timo Lepistö. A Modification of the Elias-Bound and Nontexistence Theorems for Perfect Codes in the Lee-Metric , 1981, Inf. Control..
[13] Sylvain Gravier,et al. On the Non-existence of 3-Dimensional Tiling in the Lee Metric , 1998, Eur. J. Comb..
[14] Paul M. Weichsel,et al. Dominating sets in n-cubes , 1994, J. Graph Theory.
[15] Lorenzo Milazzo,et al. Enumerating and decoding perfect linear Lee codes , 2009, Des. Codes Cryptogr..
[16] Paul H. Siegel,et al. Lee-metric BCH codes and their application to constrained and partial-response channels , 1994, IEEE Trans. Inf. Theory.
[17] Jarkko Kari,et al. An Algebraic Geometric Approach to Nivat's Conjecture , 2015, ICALP.
[19] Rudolf Ahlswede,et al. On Perfect Codes and Related Concepts , 2001, Des. Codes Cryptogr..
[20] Sarit Buzaglo,et al. Tilings by (0.5, n)-Crosses and Perfect Codes , 2013, SIAM J. Discret. Math..
[21] Jeffrey C. Lagarias,et al. Tiling the line with translates of one tile , 1996 .
[22] Tao Zhang,et al. Perfect and Quasi-Perfect Codes Under the $l_{p}$ Metric , 2017, IEEE Transactions on Information Theory.
[23] Bella Bose,et al. Quasi-perfect Lee distance codes , 2003, IEEE Trans. Inf. Theory.
[24] Frank W. Barnes. Algebraic theory of brick packing II , 1982, Discret. Math..
[25] Henry Cohn,et al. New upper bounds on sphere packings I , 2001, math/0110009.
[26] C. Y. Lee,et al. Some properties of nonbinary error-correcting codes , 1958, IRE Trans. Inf. Theory.
[27] Peter Horák,et al. Fast decoding of quasi-perfect Lee distance codes , 2006, Des. Codes Cryptogr..
[28] Werner Ulrich,et al. Non-binary error correction codes , 1957 .
[29] Anxiao Jiang,et al. Correcting Charge-Constrained Errors in the Rank-Modulation Scheme , 2010, IEEE Transactions on Information Theory.
[30] Simon Špacapan,et al. Nonexistence of face-to-face four-dimensional tilings in the Lee metric , 2007, Eur. J. Comb..
[31] P. Horak. Tilings in Lee metric , 2009, Eur. J. Comb..
[32] Mario Szegedy,et al. Algorithms to tile the infinite grid with finite clusters , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[33] Karel A. Post. Nonexistence Theorems on Perfect Lee Codes over Large Alphabets , 1975, Inf. Control..
[34] Alexander Vardy,et al. Interleaving Schemes for Multidimensional Cluster Errors , 1998, IEEE Trans. Inf. Theory.
[35] Cristobal Camarero,et al. Quasi-Perfect Lee Codes of Radius 2 and Arbitrarily Large Dimension , 2014, IEEE Transactions on Information Theory.
[36] Peter Horák,et al. Non-periodic Tilings of ℝn by Crosses , 2012, Discret. Comput. Geom..
[37] S. Bhattacharya. Periodicity and decidability of tilings of $\mathbb{Z}^{2}$ , 2016, 1602.05738.
[38] S. Bhattacharya. Periodicity and decidability of tilings of ℤ2 , 2020, American Journal of Mathematics.
[39] Peter Horák,et al. A new approach towards the Golomb-Welch conjecture , 2014, Eur. J. Comb..
[40] H. Minkowski. Dichteste gitterförmige Lagerung kongruenter Körper , 1904 .
[41] S. Golomb,et al. Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .
[42] S. Szabó. On mosaics consisting of multidimensional crosses , 1981 .
[43] P. Horak. On perfect Lee codes , 2009, Discret. Math..
[44] Moshe Schwartz,et al. Quasi-Cross Lattice Tilings With Applications to Flash Memory , 2011, IEEE Transactions on Information Theory.
[45] Jaakko Astola. An Elias-type bound for Lee codes over large alphabets and its application to perfect codes , 1982, IEEE Trans. Inf. Theory.
[46] Frank W. Barnes,et al. Algebraic theory of brick packing I , 1982, Discret. Math..
[47] Dongryul Kim. Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions , 2017, Eur. J. Comb..
[48] Myung M. Bae,et al. Resource Placement in Torus-Based Networks , 1997, IEEE Trans. Computers.
[49] Sylvain Gravier,et al. On the nonexistence of three-dimensional tiling in the Lee metric II , 2001, Discret. Math..
[51] Factoring Elementary p-Groups for p ≤ 7 , 2011 .