Ultra-high spectral resolution spectrometer for single photon source characterization

In future quantum communication systems, single photons will be required to possess very narrow linewidths and accurate wavelengths for efficient interaction with quantum memories. Spectral characterization of such single photon sources is necessary and must be performed with very high spectral resolution, wavelength accuracy and detection sensitivity. We propose a method to precisely characterize the spectral properties of narrow-linewidth single-photon sources using an atomic vapor cell based on electromagnetically-induced transparency. We have experimentally demonstrated a spectral resolution of better than 150 kHz, an absolute wavelength accuracy of within 50 kHz and an exceptional detection sensitivity suitable for optical signals as weak as -117 dBm.

[1]  Jian-Wei Pan,et al.  Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion , 2011 .

[2]  Giuliano Scarcelli,et al.  Remote spectral measurement using entangled photons , 2003, quant-ph/0407164.

[3]  Lijun Ma,et al.  Single photon frequency up-conversion and its applications , 2012 .

[4]  Lijun Ma,et al.  Frequency correlated biphoton spectroscopy using tunable upconversion detector , 2013 .

[5]  Lijun Ma,et al.  Narrow-linewidth source of greatly non-degenerate photon pairs for quantum repeaters from a short singly resonant cavity , 2015 .

[6]  Christian Hepp,et al.  Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. , 2012, Physical review letters.

[7]  Sarah E. Harris,et al.  Nonlinear Optical Processes Using Electromagnetically Induced Transparency , 1990, Digest on Nonlinear Optics: Materials, Phenomena and Devices.

[8]  Christoph Simon,et al.  Prospective applications of optical quantum memories , 2013, 1306.6904.

[9]  Irina Novikova,et al.  Electromagnetically induced transparency‐based slow and stored light in warm atoms , 2012 .

[10]  Paul G. Kwiat,et al.  High efficiency single photon detection via frequency up-conversion , 2004 .

[11]  Marius A Albota,et al.  Efficient single-photon counting at 1.55 microm by means of frequency upconversion. , 2004, Optics letters.

[12]  N. Gisin,et al.  Quantum memory for photons , 2015 .

[13]  Atsushi Yabushita,et al.  Spectroscopy by frequency-entangled photon pairs , 2004 .

[14]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[15]  N. Gisin,et al.  Low jitter up-conversion detectors for telecom wavelength GHz QKD , 2006 .

[16]  Christine A. Muschik,et al.  Quantum information at the interface of light with atomic ensembles and micromechanical oscillators , 2011, Quantum Inf. Process..

[17]  Jian-Wei Pan,et al.  Observation of prolonged coherence time of the collective spin wave of an atomic ensemble in a paraffin-coated {sup 87}Rb vapor cell , 2009, 0901.3627.

[18]  Jian-Wei Pan,et al.  Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. , 2008, Physical review letters.

[19]  Hiroki Takesue,et al.  Single-photon frequency down-conversion experiment , 2010, 1006.0364.

[20]  Masahide Sasaki,et al.  High-fidelity conversion of photonic quantum information to telecommunication wavelength with superconducting single-photon detectors , 2012, 1207.1585.

[21]  S. A. Moiseev,et al.  Photon‐echo quantum memory in solid state systems , 2009 .

[22]  D. Kalashnikov,et al.  Biphoton spectroscopy of YAG:Er3+ crystal , 2007 .

[23]  Jeffrey H Shapiro,et al.  Time-bin-modulated biphotons from cavity-enhanced down-conversion. , 2006, Physical review letters.

[24]  Lijun Ma,et al.  Quantum Transduction of Telecommunications-band Single Photons from a Quantum Dot by Frequency Upconversion , 2010, 1004.2686.

[25]  H. de Riedmatten,et al.  A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band , 2014, Nature Communications.

[26]  P. Kumar,et al.  Quantum frequency conversion. , 1990, Optics letters.

[27]  E S Polzik,et al.  Time gating of heralded single photons for atomic memories. , 2009, Optics letters.

[28]  Joshua Nunn,et al.  Quantum memories: emerging applications and recent advances , 2015, Journal of modern optics.

[29]  Y. Shih,et al.  Quantum teleportation with a complete Bell state measurement , 2000, Physical Review Letters.

[30]  G. Corrielli,et al.  Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths. , 2013, Optics express.

[31]  G. Guo,et al.  Single-photon-level quantum image memory based on cold atomic ensembles , 2013, Nature Communications.

[32]  K. Akiba,et al.  Storage and retrieval of nonclassical photon pairs and conditional single photons generated by the parametric down-conversion process , 2007, 0711.3377.

[33]  Aephraim M. Steinberg,et al.  Bright filter-free source of indistinguishable photon pairs. , 2008, Optics express.

[34]  Y. O. Dudin,et al.  A quantum memory with telecom-wavelength conversion , 2010 .

[35]  Jianming Wen,et al.  Optimal storage and retrieval of single-photon waveforms. , 2012, Optics express.

[36]  Jian-Wei Pan,et al.  Memory-built-in quantum teleportation with photonic and atomic qubits , 2007, 0705.1256.

[37]  Matthias Scholz,et al.  Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. , 2009, Physical review letters.

[38]  Leo W. Hollberg,et al.  Spectroscopy in Dense Coherent Media: Line Narrowing and Interference Effects , 1997 .

[39]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[40]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[41]  A I Lvovsky,et al.  Decoherence of electromagnetically induced transparency in atomic vapor. , 2006, Optics letters.

[42]  J. Laurat,et al.  Mapping photonic entanglement into and out of a quantum memory , 2007, Nature.

[43]  A. Kuzmich,et al.  Entanglement of light-shift compensated atomic spin waves with telecom light. , 2010, Physical review letters.

[44]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[45]  Almut Beige,et al.  Announcing the JMO Series on Quantum Memories , 2013 .

[46]  Kumar,et al.  Observation of quantum frequency conversion. , 1992, Physical review letters.

[47]  Z. Y. Ou,et al.  Cavity Enhanced Spontaneous Parametric Down-Conversion for the Prolongation of Correlation Time between Conjugate Photons , 1999 .

[48]  D. Kalashnikov,et al.  Biphoton spectroscopy in a strongly nondegenerate regime of SPDC , 2008 .