Exploring semantically-related concepts from Wikipedia: the case of SeRE

In this paper we present our web application SeRE designed to explore semantically related concepts. Wikipedia and DBpedia are rich data sources to extract related entities for a given topic, like in- and out-links, broader and narrower terms, categorisation information etc. We use the Wikipedia full text body to compute the semantic relatedness for extracted terms, which results in a list of entities that are most relevant for a topic. For any given query, the user interface of SeRE visualizes these related concepts, ordered by semantic relatedness; with snippets from Wikipedia articles that explain the connection between those two entities. In a user study we examine how SeRE can be used to find important entities and their relationships for a given topic and to answer the question of how the classification system can be used for filtering.

[1]  Chaomei Chen,et al.  Visual Interfaces to Digital Libraries: Motivation, Utilization, and Socio-technical Challenges , 2002, Visual Interfaces to Digital Libraries.

[2]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[3]  David M. W. Powers,et al.  Search Engine Result Visualisation: Challenges and Opportunities , 2009, 2009 13th International Conference Information Visualisation.

[4]  Paul M. B. Vitányi,et al.  The Google Similarity Distance , 2004, IEEE Transactions on Knowledge and Data Engineering.

[5]  Martin J. Eppler,et al.  Drawing Distinctions: The Visualization of Classification , 2009 .

[6]  Sherry Koshman,et al.  Visualization-based information retrieval on the Web , 2006 .

[7]  Thomas Ertl,et al.  Facet Graphs: Complex Semantic Querying Made Easy , 2010, ESWC.

[8]  Bernd Ritschel,et al.  Visualization of semantic relations in geosicences , 2010 .

[9]  Steffen Lohmann,et al.  gFacet: A Browser for the Web of Data , 2008, IMC-SSW@SAMT.

[10]  Maged N Kamel Boulos,et al.  The use of interactive graphical maps for browsing medical/health Internet information resources , 2003, International journal of health geographics.

[11]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[12]  Ian H. Witten,et al.  Mining Meaning from Wikipedia , 2008, Int. J. Hum. Comput. Stud..

[13]  Nigel Ford,et al.  Serendipity and information seeking: an empirical study , 2003, J. Documentation.

[14]  Maja Žumer,et al.  VISUALIZING FOR EXPLORATION AND DISCOVERY , 2010 .

[15]  Steffen Lohmann,et al.  Interactive Relationship Discovery via the Semantic Web , 2010, ESWC.

[16]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.