Hot-spot KIF5A mutations cause familial ALS

Brenner et al. show that mutations in a C-terminal hotspot of kinesin-5A (KIF5A) can cause a classical ALS phenotype. Experiments using patient-derived cell lines suggest haploinsufficiency as the molecular genetic mechanism. This underlines the relevance of intracellular transport processes for ALS, and is important for clinico-genetic diagnosis and counselling.

[1]  C. Broeckhoven,et al.  NEK1 genetic variability in a Belgian cohort of ALS and ALS-FTD patients , 2018, Neurobiology of Aging.

[2]  A. Brice,et al.  Massive sequencing of 70 genes reveals a myriad of missing genes or mechanisms to be uncovered in hereditary spastic paraplegias , 2017, European Journal of Human Genetics.

[3]  R. Płoski,et al.  KIF5A de novo mutation associated with myoclonic seizures and neonatal onset progressive leukoencephalopathy , 2017, Clinical genetics.

[4]  Denis C. Bauer,et al.  Genetic correlation between amyotrophic lateral sclerosis and schizophrenia , 2017, Nature Communications.

[5]  K. Fischbeck,et al.  A novel mutation in KIF5A in a Malian family with spastic paraplegia and sensory loss , 2017, Annals of clinical and translational neurology.

[6]  H. Braak,et al.  Pathological TDP-43 changes in Betz cells differ from those in bulbar and spinal α-motoneurons in sporadic amyotrophic lateral sclerosis , 2016, Acta Neuropathologica.

[7]  T. Crawford,et al.  KIF5A mutations cause an infantile onset phenotype including severe myoclonus with evidence of mitochondrial dysfunction , 2016, Annals of neurology.

[8]  Annelot M. Dekker,et al.  NEK1 variants confer susceptibility to amyotrophic lateral sclerosis , 2016, Nature Genetics.

[9]  R. Takahashi,et al.  Late-onset spastic paraplegia type 10 (SPG10) family presenting with bulbar symptoms and fasciculations mimicking amyotrophic lateral sclerosis , 2016, Journal of the Neurological Sciences.

[10]  T. Wieland,et al.  NEK1 mutations in familial amyotrophic lateral sclerosis. , 2016, Brain : a journal of neurology.

[11]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[12]  T. Wieland,et al.  Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia , 2015, Nature Neuroscience.

[13]  D. Hughes,et al.  Extended phenotypic spectrum of KIF5A mutations , 2014, Neurology.

[14]  John L. Robinson,et al.  TDP-43 pathology and neuronal loss in amyotrophic lateral sclerosis spinal cord , 2014, Acta Neuropathologica.

[15]  J. Nielsen,et al.  Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics* , 2013, Molecular & Cellular Proteomics.

[16]  John Q. Trojanowski,et al.  Amyotrophic lateral sclerosis—a model of corticofugal axonal spread , 2013, Nature Reviews Neurology.

[17]  C. Moores,et al.  Delineation of the TRAK binding regions of the kinesin-1 motor proteins , 2013, FEBS letters.

[18]  W. Rathmann,et al.  Association of Subclinical Inflammation With Polyneuropathy in the Older Population , 2013, Diabetes Care.

[19]  J. Kril,et al.  Classification of FTLD-TDP cases into pathological subtypes using antibodies against phosphorylated and non-phosphorylated TDP43 , 2013, Acta Neuropathologica Communications.

[20]  N. Hirokawa,et al.  Molecular Motor KIF5A Is Essential for GABAA Receptor Transport, and KIF5A Deletion Causes Epilepsy , 2012, Neuron.

[21]  Leonard H van den Berg,et al.  Evidence for an oligogenic basis of amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[22]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[23]  P. Andersen,et al.  EFNS guidelines on the Clinical Management of Amyotrophic Lateral Sclerosis (MALS) – revised report of an EFNS task force , 2012, European journal of neurology.

[24]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[25]  Anthony Brown,et al.  A hereditary spastic paraplegia mutation in kinesin-1A/KIF5A disrupts neurofilament transport , 2010, Molecular Neurodegeneration.

[26]  H. Engler,et al.  SPG11 mutations cause Kjellin syndrome, a hereditary spastic paraplegia with thin corpus callosum and central retinal degeneration , 2009, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[27]  N. Hirokawa,et al.  Kinesin superfamily motor proteins and intracellular transport , 2009, Nature Reviews Molecular Cell Biology.

[28]  A. Chiò,et al.  Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation , 2009, Neurobiology of Aging.

[29]  A. Durr,et al.  Complicated forms of autosomal dominant hereditary spastic paraplegia are frequent in SPG10 , 2009, Human mutation.

[30]  V. Kimonis,et al.  VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. , 2008, Biochimica et biophysica acta.

[31]  J. Trojanowski,et al.  Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. , 2008, Archives of neurology.

[32]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[33]  P. Andersen,et al.  EFNS task force on management of amyotrophic lateral sclerosis: guidelines for diagnosing and clinical care of patients and relatives , 2005, European journal of neurology.

[34]  V. Meininger,et al.  A Frameshift Deletion in Peripherin Gene Associated with Amyotrophic Lateral Sclerosis* , 2004, Journal of Biological Chemistry.

[35]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[36]  E. Myers,et al.  Finishing a whole-genome shotgun: Release 3 of the Drosophila melanogaster euchromatic genome sequence , 2002, Genome Biology.

[37]  M. Pericak-Vance,et al.  A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). , 2002, American journal of human genetics.

[38]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[39]  M. Pericak-Vance,et al.  The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis , 2001, Nature Genetics.

[40]  V. Meininger,et al.  Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. , 1994, Human molecular genetics.

[41]  R. Vale,et al.  Cloning and localization of a conventional kinesin motor expressed exclusively in neurons , 1994, Neuron.