Comparison of TerraSAR-X and ALOS PALSAR Differential Interferometry With Multisource DEMs for Monitoring Ground Displacement in a Discontinuous Permafrost Region

Differential synthetic aperture radar interferometry (DInSAR) has shown its capability in monitoring ground displacement caused by the freeze-thaw cycle in the active layer of permafrost regions. However, the unique landscape in the discontinuous permafrost zone increases the difficulty of applying DInSAR to detect ground displacements. In this study, datasets from two radar systems, X-band TerraSAR-X and L-band ALOS PALSAR, were used to evaluate the influencing factors and application conditions for DInSAR in the discontinuous permafrost environment based on a large number of analyzed interferograms. Furthermore, the impact of different DEMs on the application of DInSAR was illustrated by comparing the high-resolution LiDAR-DEM, TanDEM-X DEM, and SRTM DEM. The results demonstrate that temporal decorrelation and strong volume decorrelation in areas with developed vegetation highly constrains the application of X-band data. In terrain with more developed vegetation (such as shrubs and spruce), the X-band differential phase becomes linked to the canopy rather than the topography, whereas L-band data show promising results in retrieving topography-related displacement. By comparing the displacement velocity maps of the two sensors and referencing in situ measurements, we demonstrated that the ALOS PALSAR results capture the permafrost-induced terrain movement characteristics and values in the correct range. Moreover, the influence of soil moisture and vegetation phenology on the accuracy of displacement retrievals using the L-band data are illustrated and discussed. The analyses confirm that the L-band has strong advantages over the X-band in monitoring displacements in discontinuous permafrost environments.

[1]  Dengqiu Li,et al.  Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data , 2016, Int. J. Appl. Earth Obs. Geoinformation.

[2]  Andreas Kääb,et al.  Spatio-temporal variability of X-band radar backscatter and coherence over the Lena River Delta, Siberia , 2016 .

[3]  Evlyn Márcia Leão de Moraes Novo,et al.  Dual-season and full-polarimetric C band SAR assessment for vegetation mapping in the Amazon várzea wetlands. , 2016 .

[4]  T. Strozzi,et al.  Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry , 2015 .

[5]  Monique Bernier,et al.  Potential of C and X Band SAR for Shrub Growth Monitoring in Sub-Arctic Environments , 2015, Remote. Sens..

[6]  Irena Hajnsek,et al.  Assessment of soil moisture effects on L-band radar interferometry , 2015 .

[7]  E. Lévesque,et al.  Assessing Permafrost Degradation and Land Cover Changes (1986–2009) using Remote Sensing Data over Umiujaq, Sub‐Arctic Québec , 2015 .

[8]  G. Riegler,et al.  WORLDDEM – A NOVEL GLOBAL FOUNDATION LAYER , 2015 .

[9]  Christopher W. Stevens,et al.  Evaluation of RADARSAT-2 DInSAR Seasonal Surface Displacement in Discontinuous Permafrost Terrain, Yellowknife, Northwest Territories, Canada , 2014 .

[10]  Christiane Schmullius,et al.  The potential of ALOS PALSAR backscatter and InSAR coherence for forest growing stock volume estimation in Central Siberia , 2014 .

[11]  Brian Brisco,et al.  RADARSAT-2 D-InSAR for ground displacement in permafrost terrain, validation from Iqaluit Airport, Baffin Island, Canada , 2014 .

[12]  Hui Lin,et al.  Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China , 2013 .

[13]  Y. Yamagata,et al.  The use of ALOS/PALSAR backscatter to estimate above-ground forest biomass: A case study in Western Siberia , 2013 .

[14]  M. Allard,et al.  Thermokarst and export of sediment and organic carbon in the Sheldrake River watershed, Nunavik, Canada , 2013 .

[15]  I. Hajnsek,et al.  A tutorial on synthetic aperture radar , 2013, IEEE Geoscience and Remote Sensing Magazine.

[16]  Urs Wegmüller,et al.  TerraSAR-X interferometry for surface deformation monitoring on periglacial area , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[17]  J. Carreiras,et al.  Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa) , 2012 .

[18]  Brian Brisco,et al.  A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada , 2011 .

[19]  Inga May Using in-field and remote sensing data to monitor permafrost dynamics in Northern Quebec , 2011 .

[20]  M. Hutchinson,et al.  Impact of Aligning Climatological Day on Gridding Daily Maximum–Minimum Temperature and Precipitation over Canada , 2011 .

[21]  Ashton Shortridge,et al.  Spatial structure and landscape associations of SRTM error , 2011 .

[22]  Juan de la Riva,et al.  Properties of X-, C- and L-band repeat-pass interferometric SAR coherence in Mediterranean pine forests affected by fires. , 2010 .

[23]  John M. Wahr,et al.  InSAR measurements of surface deformation over permafrost on the North Slope of Alaska , 2010 .

[24]  Vladimir E. Romanovsky,et al.  Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis , 2010 .

[25]  Hans Wehn,et al.  The Importance of Soil Moisture and Soil Structure for InSAR Phase and Backscatter, as Determined by FDTD Modeling , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[26]  Maurizio Santoro,et al.  Automatic Model-Based Estimation of Boreal Forest Stem Volume From Repeat Pass C-band InSAR Coherence , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Andrew Hooper,et al.  A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches , 2008 .

[28]  Sang-Wan Kim,et al.  Evaluation of TerraSAR-X Observations for Wetland InSAR Application , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Irena Hajnsek,et al.  Soil Moisture Estimation in time with D-InSAR , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[30]  M. Allard,et al.  Development and decay of a lithalsa in Northern Québec: A geomorphological history , 2008 .

[31]  Michel Allard,et al.  Segregated ice structures in various heaved permafrost landforms through CT Scan , 2008 .

[32]  M. Seguin,et al.  Le pergélisol au Québec nordique : bilan et perspectives , 2007 .

[33]  D. Galloway,et al.  The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology , 2007 .

[34]  Diana Walter,et al.  How Complementary are SRTM-X and -C Band Digital Elevation Models? , 2006 .

[35]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[36]  Marco Caccianiga,et al.  Accelerated thawing of subarctic peatland permafrost over the last 50 years , 2004 .

[37]  Lorenzo Bruzzone,et al.  An advanced system for the automatic classification of multitemporal SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Xavier Blaes,et al.  Retrieving crop parameters based on tandem ERS 1/2 interferometric coherence images , 2003 .

[39]  R. Fortier,et al.  Umiujaq, northern Québec: innovative techniques to monitor the decay of a lithalsa in response to climate change , 2003 .

[40]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Stefania Usai,et al.  A least squares database approach for SAR interferometric data , 2003, IEEE Trans. Geosci. Remote. Sens..

[42]  A. Pissart Palsas, lithalsas and remnants of these periglacial mounds. A progress report , 2002 .

[43]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[44]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[45]  Maurice Borgeaud,et al.  The use of ERS-1/2 Tandem interferometric coherence in the estimation of agricultural crop heights , 2001, IEEE Trans. Geosci. Remote. Sens..

[46]  D. J. Weydahl,et al.  Analysis of ERS SAR coherence images acquired over vegetated areas and urban features , 2001 .

[47]  Giorgio Franceschetti,et al.  Urban subsidence inside the city of Napoli (Italy) Observed by satellite radar interferometry , 2000 .

[48]  Urs Wegmüller,et al.  ERS INSAR data for remote sensing hilly forested areas , 2000 .

[49]  Shusun Li,et al.  Detection of winter frost heaving of the active layer of Arctic permafrost using SAR differential interferograms , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[50]  F. Rocca,et al.  Permanent scatterers in SAR interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[51]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[52]  C. Burn The active layer: two contrasting definitions , 1998 .

[53]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[54]  P. Rosen,et al.  Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps , 1997 .

[55]  D. Massonnet,et al.  Deflation of Mount Etna monitored by spaceborne radar interferometry , 1995, Nature.

[56]  K. Feigl,et al.  The displacement field of the Landers earthquake mapped by radar interferometry , 1993, Nature.

[57]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[58]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[59]  R. Goldstein,et al.  Mapping small elevation changes over large areas: Differential radar interferometry , 1989 .

[60]  J. R. Mackay,et al.  A Frost Tube for the Determination of Freezing in the Active Layer above Permafrost , 1973 .

[61]  Maud Pelletier Geomorphological, ecological and thermal time phase of permafrost degradation, Tasiapik, Nunavik (Québec, Canada) , 2015 .

[62]  Laurence Provencher-Nolet Détection de changement à court terme de la toundra arbustive à partir de photographies aériennes, région d'Umiujaq, Nunavik (Québec, Canada). , 2014 .

[63]  Alessandro Parizzi,et al.  A SAR Interferometric Model for Soil Moisture , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[64]  R. Fortier,et al.  Numerical simulation of the impacts of climate warming on a permafrost mound , 2004 .

[65]  C. Werner,et al.  Phase Unwrapping with GAMMA ISP Technical Report, 13-May-2002 , 2002 .

[66]  Jan Askne,et al.  Coherence Characteristics of Radar Signals from Rough Soil , 2001 .

[67]  Richard Bamler,et al.  The SRTM Mission - A World-Wide 30 m Resolution DEM from SAR Interferometry in 11 Days , 1999 .

[68]  Urs Wegmüller,et al.  Retrieval of vegetation parameters with SAR interferometry , 1997, IEEE Trans. Geosci. Remote. Sens..