Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights

We describe a strategy for rigorous arbitrary-precision evaluation of Legendre polynomials on the unit interval and its application in the generation of Gauss-Legendre quadrature rules. Our focus is on making the evaluation practical for a wide range of realistic parameters, corresponding to the requirements of numerical integration to an accuracy of about 100 to 100 000 bits. Our algorithm combines the summation by rectangular splitting of several types of expansions in terms of hypergeometric series with a fixed-point implementation of Bonnet's three-term recurrence relation. We then compute rigorous enclosures of the Gauss-Legendre nodes and weights using the interval Newton method. We provide rigorous error bounds for all steps of the algorithm. The approach is validated by an implementation in the Arb library, which achieves order-of-magnitude speedups over previous code for computing Gauss-Legendre rules with simultaneous high degree and precision.

[1]  Nicholas Hale,et al.  Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights , 2013, SIAM J. Sci. Comput..

[2]  Yunshyong Chow,et al.  A Bernstein-type inequality for the Jacobi polynomial , 1994 .

[3]  Knut Petras,et al.  On the computation of the Gauss-Legendre quadrature formula with a given precision , 1999 .

[4]  L. Trefethen Six myths of polynomial interpolation and quadrature , 2011 .

[5]  Ignace Bogaert,et al.  Iteration-Free Computation of Gauss-Legendre Quadrature Nodes and Weights , 2014, SIAM J. Sci. Comput..

[6]  Fredrik Johansson,et al.  Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic , 2016, IEEE Transactions on Computers.

[7]  K. Petras Self-validating integration and approximation of piecewise analytic functions , 2002 .

[8]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[9]  Fredrik Johansson Efficient Implementation of Elementary Functions in the Medium-Precision Range , 2015, 2015 IEEE 22nd Symposium on Computer Arithmetic.

[10]  Fredrik Johansson,et al.  Computing Hypergeometric Functions Rigorously , 2016, ACM Trans. Math. Softw..

[11]  Jonathan M. Borwein,et al.  High-precision numerical integration: Progress and challenges , 2008, J. Symb. Comput..

[12]  J. Borwein,et al.  Integrals of the Ising Class , 2006 .

[13]  David Broadhurst,et al.  Feynman integrals, L-series and Kloosterman moments , 2016, 1604.03057.

[14]  Fredrik Johansson,et al.  Evaluating parametric holonomic sequences using rectangular splitting , 2013, ISSAC.

[15]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[16]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[17]  Laurent Fousse,et al.  Accurate Multiple-Precision Gauss-Legendre Quadrature , 2007, 18th IEEE Symposium on Computer Arithmetic (ARITH '07).

[18]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[19]  David M. Smith,et al.  Efficient multiple-precision evaluation of elementary functions , 1989 .

[20]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[21]  D. V. Chudnovsky,et al.  Computer Algebra in the Service of Mathematical Physics and Number Theory , 2020, Computers in Mathematics.

[22]  I. BOGAERT,et al.  O(1) Computation of Legendre Polynomials and Gauss-Legendre Nodes and Weights for Parallel Computing , 2012, SIAM J. Sci. Comput..

[23]  H. Woźniakowski,et al.  Is Gauss quadrature optimal for analytic functions? , 1985 .

[24]  Richard P. Brent,et al.  Asymptotic approximation of central binomial coefficients with rigorous error bounds , 2016, Open Journal of Mathematical Sciences.

[25]  F. Olver Asymptotics and Special Functions , 1974 .

[26]  Jet Wimp,et al.  Computation with recurrence relations , 1986 .

[27]  Richard P. Brent,et al.  Modern Computer Arithmetic , 2010 .

[28]  Fredrik Johansson Computing Stieltjes constants using complex integration , 2019, Math. Comput..

[29]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[30]  Xiaoye S. Li,et al.  ARPREC: An arbitrary precision computation package , 2002 .

[31]  Michael Sagraloff,et al.  Fast Approximate Polynomial Multipoint Evaluation and Applications , 2013, ArXiv.