Equations for the projective closure and effective Nullstellensatz

Abstract Let k be a field and V be an algebraic subset of the affine space A(kn) given by a family of polynomials with degrees bounded. The projective closure pcl(V) of V in Pn is the smallest closed projective subset of Pn containing V. We describe an efficiently parallelisable subexponential time algorithm to compute equations for pcl(V). We also show how equations for pcl(V) can be obtained by suitably truncated Groebner basis algorithms. The proof of the two algorithms are based on an effective Nullstellensatz.

[1]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[2]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[3]  Alicia Dickenstein,et al.  The membership problem for unmixed polynomial ideals is solvable in single exponential time , 1991, Discret. Appl. Math..

[4]  D. Lazard Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .

[5]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[6]  Noaï Fitchas,et al.  Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .

[7]  Marc Giusti,et al.  Combinatorial Dimension Theory of Algebraic Varieties , 1988, J. Symb. Comput..

[8]  Daniel Lazard,et al.  Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..

[9]  A. Galligo,et al.  Practical Determination of the Dimension of an Algebraic Variety , 1989, Computers and Mathematics.

[10]  André Galligo,et al.  Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.

[11]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[12]  D. Bayer The division algorithm and the hilbert scheme , 1982 .

[13]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[14]  Marc Giusti Complexity of standard bases in projective dimension zero , 1987, EUROCAL.

[15]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[16]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[17]  A. Galligo A propos du théorème de préparation de weierstrass , 1974 .