Equations for the projective closure and effective Nullstellensatz
暂无分享,去创建一个
[1] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[2] W. Brownawell. Bounds for the degrees in the Nullstellensatz , 1987 .
[3] Alicia Dickenstein,et al. The membership problem for unmixed polynomial ideals is solvable in single exponential time , 1991, Discret. Appl. Math..
[4] D. Lazard. Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .
[5] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[6] Noaï Fitchas,et al. Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .
[7] Marc Giusti,et al. Combinatorial Dimension Theory of Algebraic Varieties , 1988, J. Symb. Comput..
[8] Daniel Lazard,et al. Resolution des Systemes d'Equations Algebriques , 1981, Theor. Comput. Sci..
[9] A. Galligo,et al. Practical Determination of the Dimension of an Algebraic Variety , 1989, Computers and Mathematics.
[10] André Galligo,et al. Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.
[11] Stuart J. Berkowitz,et al. On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..
[12] D. Bayer. The division algorithm and the hilbert scheme , 1982 .
[13] Daniel Lazard,et al. Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.
[14] Marc Giusti. Complexity of standard bases in projective dimension zero , 1987, EUROCAL.
[15] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[16] J. Kollár. Sharp effective Nullstellensatz , 1988 .
[17] A. Galligo. A propos du théorème de préparation de weierstrass , 1974 .