Lack of trans-activation function for Maedi Visna virus and Caprine arthritis encephalitis virus Tat proteins.

[1]  P. Berthon,et al.  Establishment and characterisation of ovine blood monocyte-derived cell lines. , 2001, Veterinary immunology and immunopathology.

[2]  F. Guiguen,et al.  Lack of Functional Receptors Is the Only Barrier That Prevents Caprine Arthritis-Encephalitis Virus from Infecting Human Cells , 2000, Journal of Virology.

[3]  B. Peterlin,et al.  Binding of Tat to TAR and Recruitment of Positive Transcription Elongation Factor b Occur Independently in Bovine Immunodeficiency Virus , 2000, Journal of Virology.

[4]  M. Garcia-Blanco,et al.  Canine cyclin T1 rescues equine infectious anemia virus tat trans-activation in human cells. , 2000, Virology.

[5]  T. Greenland,et al.  Conserved sequence motifs involving the tat reading frame of Brazilian caprine lentiviruses indicate affiliations to both caprine arthritis-encephalitis virus and visna-maedi virus. , 1999, The Journal of general virology.

[6]  J. Clements,et al.  Targeting of the Visna Virus Tat Protein to AP-1 Sites: Interactions with the bZIP Domains of Fos and Jun In Vitro and In Vivo , 1999, Journal of Virology.

[7]  J. Elder,et al.  Demonstration that orf2 Encodes the Feline Immunodeficiency Virus Transactivating (Tat) Protein and Characterization of a Unique Gene Product with Partial Rev Activity , 1999, Journal of Virology.

[8]  Y. Chebloune,et al.  Immortalization of caprine fibroblasts permissive for replication of small ruminant lentiviruses. , 1997, American journal of veterinary research.

[9]  V. Andrésdóttir,et al.  In vivo and in vitro infection with two different molecular clones of visna virus. , 1997, Virology.

[10]  J. Clements,et al.  The leucine domain of the visna virus Tat protein mediates targeting to an AP-1 site in the viral long terminal repeat , 1996, Journal of virology.

[11]  F. Guiguen,et al.  Replication properties of dUTPase-deficient mutants of caprine and ovine lentiviruses , 1996, Journal of virology.

[12]  R. Vigne,et al.  The caprine arthritis encephalitis virus tat gene is dispensable for efficient viral replication in vitro and in vivo , 1995, Journal of virology.

[13]  H. Kalinski,et al.  Characterization of cDNAs species encoding the Tat protein of caprine arthritis encephalitis virus. , 1994, Virology.

[14]  J. Clements,et al.  Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains , 1994, Journal of virology.

[15]  J. Clements,et al.  The CAEV tat gene trans-activates the viral LTR and is necessary for efficient viral replication. , 1993, Virology.

[16]  B. Cullen,et al.  Functional analysis of interactions between Tat and the trans-activation response element of human immunodeficiency virus type 1 in cells , 1993, Journal of virology.

[17]  J. D. Greenwood,et al.  Nucleotide sequence and biological properties of a pathogenic proviral molecular clone of neurovirulent visna virus. , 1993, Virology.

[18]  B. Cullen,et al.  Mechanism of action of regulatory proteins encoded by complex retroviruses , 1992, Microbiological reviews.

[19]  J. Clements,et al.  Molecular mechanisms of visna virus Tat: identification of the targets for transcriptional activation and evidence for a post-transcriptional effect. , 1992, Virology.

[20]  D. Baltimore,et al.  The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Haase,et al.  Isolation of replication-competent molecular clones of visna virus. , 1991, Virology.

[22]  D. Knowles,et al.  Genetic structure of the pol-env region of the caprine arthritis-encephalitis lentivirus genome. , 1991, Virology.

[23]  J. Clements,et al.  Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. , 1990, Virology.

[24]  G. Quérat,et al.  The open reading frame S of visna virus genome is a trans-activating gene. , 1989, Virology.

[25]  J. Hess,et al.  Sequences in the visna virus long terminal repeat that control transcriptional activity and respond to viral trans-activation: involvement of AP-1 sites in basal activity and trans-activation , 1989, Journal of virology.

[26]  J. Mullins,et al.  Functional comparison of transactivation by simian immunodeficiency virus from rhesus macaques and human immunodeficiency virus type 1 , 1988, Journal of virology.

[27]  B. Cullen,et al.  Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H. Gendelman,et al.  Tropism of sheep lentiviruses for monocytes: susceptibility to infection and virus gene expression increase during maturation of monocytes to macrophages , 1986, Journal of virology.

[29]  H. Gendelman,et al.  Slow, persistent replication of lentiviruses: role of tissue macrophages and macrophage precursors in bone marrow. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[30]  O. Narayan,et al.  Lentiviral diseases of sheep and goats: chronic pneumonia leukoencephalomyelitis and arthritis. , 1985, Reviews of infectious diseases.

[31]  B. Sigurdsson,et al.  Visna of sheep; a slow, demyelinating infection. , 1958, British journal of experimental pathology.

[32]  B. Sigurdsson,et al.  VISNA, A DEMYELINATING TRANSMISSIBLE DISEASE OF SHEEP , 1957, Journal of neuropathology and experimental neurology.

[33]  B. Sigurdsson Maedi, a slow progressive pneumonia of sheep: an epizoological and a pathological study , 1954 .