Thin-Film Materials for the Protection of Semiconducting Photoelectrodes in Solar-Fuel Generators

The electrochemical instability of semiconductors in aqueous electrolytes has impeded the development of robust sunlight-driven water-splitting systems. We review the use of protective thin films to improve the electrochemical stability of otherwise unstable semiconductor photoelectrodes (e.g., Si and GaAs). We first discuss the origins of instability and various strategies for achieving stable and functional photoelectrosynthetic interfaces. We then focus specifically on the use of thin protective films on photoanodes and photocathodes for photosynthetic reactions that include oxygen evolution, halide oxidation, and hydrogen evolution. Finally, we provide an outlook for the future development of thin-layer protection strategies to enable semiconductor-based solar-driven fuel production.

[1]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[2]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[3]  W. Jaegermann,et al.  Solar hydrogen generation with wide-band-gap semiconductors: GaP(100) photoelectrodes and surface modification. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  K. Rajeshwar,et al.  Photoelectrochemical Generation of Chlorine on Catalytically Modified n‐Silicon/Indium Tin Oxide Anodes , 1982 .

[5]  Adam Heller,et al.  Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes , 1982 .

[6]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[7]  Matthew W Kanan,et al.  Cobalt-phosphate oxygen-evolving compound. , 2009, Chemical Society reviews.

[8]  L. Peter,et al.  Surface recombination at semiconductor electrodes: Part I. Transient and steady-state photocurrents , 1984 .

[9]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[10]  Kimberly M. Papadantonakis,et al.  A taxonomy for solar fuels generators , 2015 .

[11]  J. Manifacier,et al.  Efficient sprayed In2O3 : Sn n‐type silicon heterojunction solar cell , 1977 .

[12]  K. Schulte,et al.  Combined photoelectrochemical conditioning and surface analysis of InP photocathodes: II. Photoelectron spectroscopy , 2002 .

[13]  Adam C. Nielander,et al.  Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation , 2015 .

[14]  P. A. Nikolaychuk The Revised Pourbaix Diagram for Silicon , 2014, Silicon.

[15]  K. Sun,et al.  Enabling silicon for solar-fuel production. , 2014, Chemical reviews.

[16]  Ib Chorkendorff,et al.  Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution , 2013 .

[17]  Philippe Allongue,et al.  Etching of silicon in NaOH solutions. I: In-situ STM investigation of n-Si(111) , 1993 .

[18]  Heli Wang,et al.  The stability of illuminated p-GaInP2 semiconductor photoelectrode , 2012 .

[19]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[20]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .

[21]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[22]  T. Schedel-Niedrig,et al.  Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes , 2013 .

[23]  Kuei-Hsien Chen,et al.  Improved corrosion resistance of GaN electrodes in NaCl electrolyte for photoelectrochemical hydrogen generation , 2013 .

[24]  H. Gerischer,et al.  Photodecomposition of Semiconductors – A Thermodynamic Approach. A Citation-Classic Commentary on the Stability of semiconductor electrodes against photodecomposition , 1977 .

[25]  Michael Grätzel,et al.  Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst , 2014, Nature Communications.

[26]  Paul C. McIntyre,et al.  Effects of catalyst material and atomic layer deposited TiO2 oxide thickness on the water oxidation performance of metal–insulator–silicon anodes , 2013 .

[27]  Adam C. Nielander,et al.  Photoelectrochemical behavior of n-type Si(111) electrodes coated with a single layer of graphene. , 2013, Journal of the American Chemical Society.

[28]  Tao Yu,et al.  Co3O4 Nanoparticles as Robust Water Oxidation Catalysts Towards Remarkably Enhanced Photostability of a Ta3N5 Photoanode , 2012 .

[29]  Lin-Wang Wang,et al.  Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution , 2012, 1203.1970.

[30]  S. S. Eskildsen,et al.  Structural analysis of iron oxide coated n-silicon heterojunction photoanodes , 1984 .

[31]  D. Cahen,et al.  Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes , 1976, Nature.

[32]  A. Bard,et al.  Semiconductor electrodes. 43. The effect of light intensity and iodine doping on the stabilization of n-silicon by phthalocyanine films. Technical report , 1981 .

[33]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[34]  M. Shen,et al.  Stable and efficient multi-crystalline n+p silicon photocathode for H2 production with pyramid-like surface nanostructure and thin Al2O3 protective layer , 2015 .

[35]  O. Hansen,et al.  MoS2-an integrated protective and active layer on n(+)p-Si for solar H2 evolution. , 2013, Physical chemistry chemical physics : PCCP.

[36]  I. D. Makuta,et al.  Photoelectrochemical behaviour of n-silicon photoanodes coated with chromium(III) oxide films and Cr2O3 containing composite layers , 1989 .

[37]  Nathan S. Lewis,et al.  An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems , 2013 .

[38]  Kazunari Domen,et al.  Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. , 2010, Journal of the American Chemical Society.

[39]  Tonio Buonassisi,et al.  High photocurrent in silicon photoanodes catalyzed by iron oxide thin films for water oxidation. , 2012, Angewandte Chemie.

[40]  T. Osaka,et al.  Photoelectrochemical Behavior of Iron Oxide/n‐Si Heterojunction Electrodes with an Outer Pd Layer , 1984 .

[41]  M. Dignam,et al.  Efficiency of Splitting Water with Semiconducting Photoelectrodes , 1984 .

[42]  A. Kraft,et al.  ITO coated n-GaAs electrodes for photoelectrochemical solar cells , 1994 .

[43]  Shixun Wang,et al.  Photoelectrochemical characteristics of metal-modified epitaxial n-Si anodes: Part I. NiO(OH)-coated n+/p-Si and n+/n-Si electrodes for catalytic oxygen evolution , 1987 .

[44]  Kyoung-Shin Choi,et al.  Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting , 2014, Science.

[45]  Y. Nakato,et al.  PHOTO-ELECTROCHEMICAL BEHAVIORS OF SEMICONDUCTOR ELECTRODES COATED WITH THIN METAL FILMS , 1975 .

[46]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[47]  Sungho Jin,et al.  Nickel oxide functionalized silicon for efficient photo-oxidation of water , 2012 .

[48]  Adam Heller Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of Water in Photoelectrochemical Cells , 1981 .

[49]  R. C. Kainthla,et al.  Protection of n‐Si Photoanode against Photocorrosion in Photoelectrochemical Cell for Water Electrolysis , 1986 .

[50]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[51]  Eiji Suzuki,et al.  One chip photovoltaic water electrolysis device , 2003 .

[52]  Anna N. Ivanovskaya,et al.  A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis , 2003 .

[53]  A. Fujishima,et al.  STABILIZATION OF PHOTOANODES IN ELECTROCHEMICAL PHOTOCELLS FOR SOLAR ENERGY CONVERSION , 1978 .

[54]  Y. Nakato,et al.  ESCA and Photoelectrochemical Studies of p‐n Junction Silicon Electrodes Protected by Platinum Deposition for Use in Solar Energy Conversion , 1985 .

[55]  J. Turner,et al.  III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. , 2006, The journal of physical chemistry. B.

[56]  Fuding Lin,et al.  Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. , 2014, Nature materials.

[57]  N. Lewis,et al.  Design of a 13% efficient n-GaAs1−xPx semiconductor–liquid junction solar cell , 1982, Nature.

[58]  F. Toma,et al.  p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation. , 2015, Journal of the American Chemical Society.

[59]  Eric L. Miller,et al.  Photoelectrolysis of water using thin copper gallium diselenide electrodes , 2008 .

[60]  A. Cuevas,et al.  Charge Carrier Separation in Solar Cells , 2015, IEEE Journal of Photovoltaics.

[61]  Kazunari Domen,et al.  Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation , 2011 .

[62]  G. Hodes,et al.  Heterojunction Silicon/Indium Tin Oxide Photoelectrodes: Development of Stable Systems in Aqueous Electrolytes and Their Applicability to Solar Energy Conversion and Storage , 1983 .

[63]  Alireza Kargar,et al.  ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. , 2013, ACS nano.

[64]  N. Dasgupta,et al.  Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. , 2013, Journal of the American Chemical Society.

[65]  J. Vazquez-Arenas,et al.  Ti Anodization in Alkaline Electrolyte: The Relationship between Transport of Defects, Film Hydration and Composition , 2013 .

[66]  Thomas E. Mallouk,et al.  Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells , 2012 .

[67]  J. S. Lee,et al.  Improved photoelectrochemical activity of CaFe2O4/BiVO4 heterojunction photoanode by reduced surface recombination in solar water oxidation. , 2014, ACS applied materials & interfaces.

[68]  N. Lewis,et al.  Evaluation and optimization of mass transport of redox species in silicon microwire-array photoelectrodes , 2012, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Green,et al.  655 mV open-circuit voltage, 17.6% efficient silicon MIS solar cells , 1979 .

[70]  Marika Edoff,et al.  CuInxGa1−xSe2 as an efficient photocathode for solar hydrogen generation , 2013 .

[71]  Nathan S. Lewis,et al.  An experimental and modeling/simulation-based evaluation of the efficiency and operational performance characteristics of an integrated, membrane-free, neutral pH solar-driven water-splitting system , 2014 .

[72]  Dunwei Wang,et al.  Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. , 2013, Angewandte Chemie.

[73]  Y. Nakato,et al.  EFFICIENT PHOTOELECTROCHEMICAL CONVERSION OF SOLAR ENERGY WITH n-TYPE SILICON SEMICONDUCTOR ELECTRODES SURFACE-DOPED WITH IIIA-GROUP ELEMENTS , 1982 .

[74]  Matthew R. Shaner,et al.  Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting , 2015 .

[75]  Yu-Lun Chueh,et al.  p-Type InP nanopillar photocathodes for efficient solar-driven hydrogen production. , 2012, Angewandte Chemie.

[76]  Charles C. Sorrell,et al.  Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects , 2002 .

[77]  B. Conway,et al.  Surface and bulk processes at oxidized iridium electrodes—II. Conductivity-switched behaviour of thick oxide films , 1983 .

[78]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[79]  J. Pankow,et al.  Novel Micropixelation Strategy to Stabilize Semiconductor Photoelectrodes for Solar Water Splitting Systems , 2012 .

[80]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[81]  C. Battaglia,et al.  Role of TiO2 Surface Passivation on Improving the Performance of p-InP Photocathodes , 2015 .

[82]  N. Lewis,et al.  pH-Independent, 520 mV Open-Circuit Voltages of Si/Methyl Viologen 2+/+ Contacts Through Use of Radial n + p-Si Junction Microwire Array Photoelectrodes , 2011 .

[83]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[84]  Shuichi Nonomura,et al.  Efficient Solar Water Splitting with a Composite “n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2” Semiconductor Electrode , 2009 .

[85]  A. Heller,et al.  Stable Semiconductor Liquid Junction Cell with 9 Percent Solar-to-Electrical Conversion Efficiency , 1977, Science.

[86]  J. Turner A Nickel Finish Protects Silicon Photoanodes for Water Splitting , 2013, Science.

[87]  Jun Kubota,et al.  Stable hydrogen evolution from CdS-modified CuGaSe2 photoelectrode under visible-light irradiation. , 2013, Journal of the American Chemical Society.

[88]  A. Heller,et al.  Semiconductor liquid junction solar cells based on anodic sulphide films , 1976, Nature.

[89]  James R. McKone,et al.  Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution , 2013 .

[90]  Kazunari Domen,et al.  Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. , 2012, Journal of the American Chemical Society.

[91]  D. Bélanger,et al.  Characteristics and Stability of n ‐ Si / SnO2 and n ‐ Si / SnO2 / Pt Photoanodes , 1986 .

[92]  Luca Boarino,et al.  Monolithic cells for solar fuels. , 2014, Chemical Society reviews.

[93]  Igor Levin,et al.  H2 evolution at Si-based metal-insulator-semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. , 2013, Nature materials.

[94]  Jiang Yuan,et al.  Characterization of Sol‐Gel‐Derived TiO2 Coatings and Their Photoeffects on Copper Substrates , 1995 .

[95]  Miao Zhong,et al.  Surface Modification of CoO(x) Loaded BiVO₄ Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. , 2015, Journal of the American Chemical Society.

[96]  N. Lewis,et al.  Studies of the n-GaAs/KOH−Se22−−Se2− semiconductor/liquid junction , 1989 .

[97]  F. Decker,et al.  The Photocurrent‐Voltage Characteristics of the Heterojunction Combination n ‐ Si / SnO2 / Redox ‐ Electrolyte , 1983 .

[98]  Kyoung-Shin Choi,et al.  Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. , 2012, Journal of the American Chemical Society.

[99]  D. Ginley,et al.  BP‐Stabilized n‐Si and n ‐ GaAs Photoanodes , 1983 .

[100]  Y. Nakato,et al.  Silicon photoelectrodes modified with ultrafine metal islands , 1992 .

[101]  Jihun Oh,et al.  Nanoporous black silicon photocathode for H2 production by photoelectrochemical water splitting , 2011 .

[102]  A. Bard,et al.  Semiconductor electrodes. 48. Photooxidation of halides and water on n-silicon protected with silicide layers , 1983 .

[103]  S. Sampath,et al.  Sol−Gel Materials in Electrochemistry , 1997 .

[104]  O. Hansen,et al.  Protection of p(+)-n-Si Photoanodes by Sputter-Deposited Ir/IrOx Thin Films. , 2014, The journal of physical chemistry letters.

[105]  H. Dai,et al.  Nickel-coated silicon photocathode for water splitting in alkaline electrolytes , 2015, Nano Research.

[106]  K. Ohkawa,et al.  Hydrogen Generation for 500 hours by Photoelectrolysis of Water using GaN , 2012 .

[107]  E. McFarland,et al.  Stabilizing inorganic photoelectrodes for efficient solar-to-chemical energy conversion , 2013 .

[108]  R. A. Simon,et al.  Stabilization of n‐type silicon photoanodes against photoanodic decomposition with thin films of polyacetylene , 1984 .

[109]  Arnold J. Forman,et al.  Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. , 2014, ChemSusChem.

[110]  F. Toma,et al.  Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces. , 2014, Journal of the American Chemical Society.

[111]  S. Boettcher,et al.  Solution-deposited F:SnO₂/TiO₂ as a base-stable protective layer and antireflective coating for microtextured buried-junction H₂-evolving Si photocathodes. , 2014, ACS applied materials & interfaces.

[112]  Photoelectrolysis of Water with Semiconductor Materials , 1977 .

[113]  J. Hupp,et al.  Systematic modulation of quantum (electron) tunneling behavior by atomic layer deposition on nanoparticulate SnO2 and TiO2 photoanodes. , 2013, Journal of the American Chemical Society.

[114]  Takashi Nakamura,et al.  XPS and AES studies on iron‐oxide‐coated Si photoanodes with a negative flatband potential , 1983 .

[115]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[116]  Peng Wang,et al.  Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. , 2013, ACS nano.

[117]  Gunawan,et al.  Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting , 2014 .

[118]  Eric L. Miller,et al.  A hybrid multijunction photoelectrode for hydrogen production fabricated with amorphous silicon/germanium and iron oxide thin films , 2004 .

[119]  G. Bilger,et al.  Hydrogen evolution on platinum-coated p-silicon photocathodes , 1996 .

[120]  N. Lewis,et al.  Photoelectrochemical Behavior of n‑type Si(100) Electrodes Coated with Thin Films of Manganese Oxide Grown by Atomic Layer Deposition , 2013 .

[121]  Kazuhiko Maeda,et al.  Effect of TiCl4 treatment on the photoelectrochemical properties of LaTiO2N electrodes for water splitting under visible light , 2010 .

[122]  K. Ohkawa,et al.  High Stability and Efficiency of GaN Photocatalyst for Hydrogen Generation from Water , 2012 .

[123]  N. Lewis,et al.  Improved Stability of Polycrystalline Bismuth Vanadate Photoanodes by Use of Dual-Layer Thin TiO_2/Ni Coatings , 2014 .

[124]  J. D. Luttmer,et al.  Electrode materials for hydrobromic acid electrolysis in Texas Instruments' solar chemical converter , 1985 .

[125]  J. Turner,et al.  Photoelectrochemical Characterization and Durability Analysis of GaInPN Epilayers , 2008 .

[126]  R. Wilson,et al.  The Role of Metal Overlayers on Gallium Phosphide Photoelectrodes , 1977 .

[127]  H. Ono,et al.  Photoelectrochemical Properties of Iron-Oxide Films and the Coating Effects onto n-Si as an Efficient Photoanode , 1982 .

[128]  N. Lewis,et al.  Stabilization of n-cadmium telluride photoanodes for water oxidation to O2(g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition , 2014 .

[129]  James R. McKone,et al.  Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes , 2012 .

[130]  K. Sivula,et al.  Photoelectrochemical Tandem Cells for Solar Water Splitting , 2013 .

[131]  M. Antonietti,et al.  Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. , 2009, Journal of the American Chemical Society.

[132]  K. Sun,et al.  Metal on metal oxide nanowire Co-catalyzed Si photocathode for solar water splitting , 2012, Nanotechnology.

[133]  W. Mckee Development of the Spherical Silicon Solar Cell , 1982 .

[134]  A. Fahrenbruch,et al.  Sputtered oxide/indium phosphide junctions and indium phosphide surfaces , 1980 .

[135]  Ib Chorkendorff,et al.  Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. , 2011, Nature materials.

[136]  H. Dai,et al.  High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation , 2013, Science.

[137]  A. Heller Hydrogen-Evolving Solar Cells , 1984, Science.

[138]  James R. Bolton,et al.  Limiting and realizable efficiencies of solar photolysis of water , 1985, Nature.

[139]  W. Bonner,et al.  Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst , 1982 .

[140]  Tuo Wang,et al.  Transparent ALD-grown Ta2O5 protective layer for highly stable ZnO photoelectrode in solar water splitting. , 2015, Chemical communications.

[141]  C. Singer,et al.  Energy in Nature and Society: General Energetics of Complex Systems , 2009 .

[142]  M. Wrighton,et al.  Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes , 1976 .

[143]  Makoto Konagai,et al.  Photoelectrochemical water splitting using a Cu(In,Ga)Se2 thin film , 2010 .

[144]  Li Ji,et al.  A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. , 2015, Nature nanotechnology.

[145]  Matthew R. Shaner,et al.  Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2 , 2015 .

[146]  Michio Matsumura,et al.  Photoelectrochemical water splitting by tandem type and heterojunction amorphous silicon electrodes , 1988 .

[147]  György Inzelt,et al.  Handbook of Reference Electrodes , 2013 .

[148]  J. Bockris,et al.  Investigation of a protective conducting silica film on n-silicon , 1984 .

[149]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[150]  S. Campidelli,et al.  A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. , 2013, Energy, sustainability and society.

[151]  H. Atwater,et al.  Flexible, Transparent Contacts for Inorganic Nanostructures and Thin Films , 2013, Advanced materials.

[152]  James R. McKone,et al.  Will Solar-Driven Water-Splitting Devices See the Light of Day? , 2014 .

[153]  Jin-Young Jung,et al.  Long-term durable silicon photocathode protected by a thin Al2O3/SiOx layer for photoelectrochemical hydrogen evolution , 2014 .

[154]  Y. Nakato,et al.  Metal oxide coated p–n junction silicon electrodes for photoelectrochemical solar energy conversion , 1985 .

[155]  Rui Liu,et al.  Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers , 2014 .

[156]  K. Domen,et al.  Fabrication of CaFe2O4/TaON heterojunction photoanode for photoelectrochemical water oxidation. , 2013, Journal of the American Chemical Society.

[157]  W. A. Anderson,et al.  An 8% efficient layered Schottky‐barrier solar cell , 1974 .

[158]  N. Lewis,et al.  Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g). , 2015, The journal of physical chemistry letters.

[159]  D. Gamelin,et al.  Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W:BiVO4. , 2011, Journal of the American Chemical Society.

[160]  Sungho Jin,et al.  Si photoanode protected by a metal modified ITO layer with ultrathin NiO(x) for solar water oxidation. , 2014, Physical chemistry chemical physics : PCCP.

[161]  R. Stahlbush,et al.  Bias‐Dependent Etching of Silicon in Aqueous KOH , 1985 .

[162]  N. Lewis,et al.  n-Type silicon photoelectrochemistry in methanol: Design of a 10.1% efficient semiconductor/liquid junction solar cell. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[163]  Can Li,et al.  A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. , 2014, Angewandte Chemie.

[164]  J. O'm. Bockris,et al.  Significant Efficiency Increase in Self‐Driven Photoelectrochemical Cell for Water Photoelectrolysis , 1987 .

[165]  Todd G. Deutsch,et al.  Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices , 2014 .

[166]  W. H. Weinberg,et al.  Alkylation of Si Surfaces Using a Two-Step Halogenation/Grignard Route , 1996 .

[167]  Kazunari Domen,et al.  Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. , 2013, Journal of the American Chemical Society.

[168]  N. Lewis,et al.  Sputtered NiOx Films for Stabilization of p+n‐InP Photoanodes for Solar‐Driven Water Oxidation , 2015 .

[169]  S. Dahl,et al.  Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n(+)p-silicon photocathode. , 2012, Angewandte Chemie.

[170]  Ib Chorkendorff,et al.  Crystalline TiO2: A Generic and Effective Electron-Conducting Protection Layer for Photoanodes and -cathodes , 2015 .

[171]  J. Turner,et al.  Photoelectrolysis of HBr and HI Using a Monolithic Combined Photoelectrochemical/Photovoltaic Device , 1999 .

[172]  C. Black,et al.  Enhancing Water Splitting Activity and Chemical Stability of Zinc Oxide Nanowire Photoanodes with Ultrathin Titania Shells , 2013 .

[173]  K. Sivula,et al.  Optimization and stabilization of electrodeposited Cu2ZnSnS4 photocathodes for solar water reduction. , 2013, ACS applied materials & interfaces.

[174]  Fuding Lin,et al.  Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. , 2014, Physical review letters.

[175]  Y. Nakato,et al.  A nano-modified Si/TiO2 composite electrode for efficient solar water splitting , 2004 .

[176]  Christophe Ballif,et al.  Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. , 2013, Nano letters.

[177]  I. Oh,et al.  Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. , 2012, Nano letters.

[178]  Jun-Ho Yum,et al.  Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting , 2010 .

[179]  Su-Moon Park,et al.  Thermodynamic stabilities of semiconductor electrodes , 1979 .

[180]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[181]  T. Jaramillo,et al.  Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials , 2014 .

[182]  Nripan Mathews,et al.  Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability , 2012 .

[183]  Paul A. Kohl,et al.  Semiconductor Electrodes XI . Behavior of n‐ and p‐Type Single Crystal Semconductors Covered with Thin Films , 1977 .

[184]  Adam C. Nielander,et al.  Stable Solar-Driven Water Oxidation to O2(g) by Ni-Oxide-Coated Silicon Photoanodes. , 2015, The journal of physical chemistry letters.

[185]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[186]  Adam Heller,et al.  Efficient Solar to Chemical Conversion: 12% Efficient Photoassisted Electrolysis in the [ p -type InP(Ru)]/HCl-KCl/Pt(Rh) Cell , 1981 .

[187]  Kyoung-Shin Choi,et al.  A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO4 photoanode for solar water oxidation , 2012 .

[188]  Kimberly M. Papadantonakis,et al.  Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films , 2015, Proceedings of the National Academy of Sciences.

[189]  G. Campet,et al.  PROTECTION OF PHOTOANODES AGAINST PHOTO-CORROSION BY SURFACE DEPOSITION OF OXIDE FILMS: CRITERIA FOR CHOOSING THE PROTECTIVE COATING. , 1989 .

[190]  J. Robertson Band offsets of high dielectric constant gate oxides on silicon , 2002 .

[191]  R. Rocheleau,et al.  Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production , 2003 .

[192]  Harry B Gray,et al.  Powering the planet with solar fuel. , 2009, Nature chemistry.

[193]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[194]  N. Lewis,et al.  Synthesis and characterization of a photosensitive interface for hydrogen generation: Chemically modified p-type semiconducting silicon photocathodes. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[195]  Tunnel barrier photoelectrodes for solar water splitting , 2010 .

[196]  O. Terasaki,et al.  Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency , 2013, Nature Communications.

[197]  J. W. Faust,et al.  Study of the Etch‐Stop Mechanism in Silicon , 1982 .

[198]  K. Sun,et al.  Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. , 2013, Nano letters.

[199]  O. Hansen,et al.  Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes. , 2014, The journal of physical chemistry letters.

[200]  Gunawan,et al.  Enhancement of solar hydrogen evolution from water by surface modification with CdS and TiO2 on porous CuInS2 photocathodes prepared by an electrodeposition-sulfurization method. , 2014, Angewandte Chemie.

[201]  Matthew R. Shaner,et al.  Enhanced Stability and Activity for Water Oxidation in Alkaline Media with Bismuth Vanadate Photoelectrodes Modified with a Cobalt Oxide Catalytic Layer Produced by Atomic Layer Deposition , 2013 .

[202]  Bruce A. Parkinson,et al.  On the efficiency and stability of photoelectrochemical devices , 1984 .

[203]  E. Kelder,et al.  Structural, Optical, and Electronic Properties of Silicon/Boron Phosphide Heterojunction Photoelectrodes , 1991 .

[204]  Chia-Yu Lin,et al.  Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting , 2012 .