Adjustment of Planned Surveying and Geodetic Networks Using Second-Order Nonlinear Programming Methods

Due to the huge amount of redundant data, the problem arises of finding a single integral solution that will satisfy numerous possible accuracy options. Mathematical processing of such measurements by traditional geodetic methods can take significant time and at the same time does not provide the required accuracy. This article discusses the application of nonlinear programming methods in the computational process for geodetic data. Thanks to the development of computer technology, a modern surveyor can solve new emerging production problems using nonlinear programming methods—preliminary computational experiments that allow evaluating the effectiveness of a particular method for solving a specific problem. The efficiency and performance comparison of various nonlinear programming methods in the course of trilateration network equalization on a plane is shown. An algorithm of the modified second-order Newton’s method is proposed, based on the use of the matrix of second partial derivatives and the Powell and the Davis–Sven–Kempy (DSK) method in the computational process. The new method makes it possible to simplify the computational process, allows the user not to calculate the preliminary values of the determined parameters with high accuracy, since the use of this method makes it possible to expand the region of convergence of the problem solution.

[1]  V. Valkov,et al.  Satellite-based techniques for monitoring of bridge deformations , 2018, Journal of Physics: Conference Series.

[2]  A Sholomitskii,et al.  Design and Preliminary Calculation of the Accuracy of Special Geodetic and Mine Surveying Networks , 2019, IOP Conference Series: Earth and Environmental Science.

[3]  THE IMPLEMENTATION OF BUILDING INFORMATION MODELING TECHNOLOGIES IN THE TRAINING OF BACHELORS AND MASTERS AT SAINT- PETERSBURGMINING UNIVERSITY , 2020 .

[4]  Martin Štroner,et al.  Enhanced maximal precision increment method for network measurement optimization , 2018 .

[5]  A. Sviridenko The correction to Newton's methods of optimization , 2015 .

[7]  G. G. Shevshenko Using search methods for leveling and assessing the accuracy of elementary geodetic constructions , 2019 .

[8]  Alina Aleksandrovna Kochneva and Aleksandr Igorevich Kazantsev,et al.  JUSTIFICATION OF QUALITY ESTIMATION METHOD OF CREATIONOF DIGITAL ELEVATION MODELS ACCORDING TO THE DATA OFAIRBORNE LASER SCANNING WHEN DESIGNING THE MOTOR WAYS , 2017 .

[9]  Gennadiy Anatolievich Zelenkov,et al.  Approach to development of algorithms of Newtonian methods of unconstrained optimization, their software implementation and benchmarking , 2013 .

[10]  A. S. Vasil'ev,et al.  SPECIAL STRATEGY OF TREATMENT OF DIFFICULTY-PROFILE CONICAL SCREW SURFACES OF SINGLE-SCREW COMPRESSORS WORKING BODIES , 2019, Journal of Mining Institute.

[11]  Л. А. Голдобина,et al.  Обеспечение безопасности строительно-монтажных работ при возведении зданий и сооружений , 2019 .