Isogeometric analysis enhanced by the scaled boundary finite element method

[1]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[2]  J. Z. Zhu,et al.  The finite element method , 1977 .

[3]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[4]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[5]  John P. Wolf,et al.  The scaled boundary finite-element method : a fundamental solution-less boundary-element method , 2001 .

[6]  J. Wolf,et al.  The scaled boundary finite-element method – a primer: derivations , 2000 .

[7]  A. Deeks,et al.  A p‐hierarchical adaptive procedure for the scaled boundary finite element method , 2002 .

[8]  John P. Wolf,et al.  Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method , 2002 .

[9]  John P. Wolf,et al.  Stress recovery and error estimation for the scaled boundary finite‐element method , 2002 .

[10]  J. Wolf,et al.  A virtual work derivation of the scaled boundary finite-element method for elastostatics , 2002 .

[11]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[12]  I. Babuska,et al.  Acta Numerica 2003: Survey of meshless and generalized finite element methods: A unified approach , 2003 .

[13]  A. Deeks Prescribed side-face displacements in the scaled boundary finite-element method , 2004 .

[14]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[15]  Andrew Deeks,et al.  Determination of coefficients of crack tip asymptotic fields using the scaled boundary finite element method , 2005 .

[16]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[17]  Paul A. Wawrzynek,et al.  Methods for calculating stress intensity factors in anisotropic materials: Part I—z = 0 is a symmetric plane , 2005 .

[18]  T. Rabczuk,et al.  A Meshfree Method based on the Local Partition of Unity for Cohesive Cracks , 2007 .

[19]  Subrata K. Chakrabarti,et al.  Scaled boundary FEM solution of short-crested wave diffraction by a vertical cylinder , 2007 .

[20]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[21]  A. Deeks,et al.  A p-adaptive scaled boundary finite element method based on maximization of the error decrease rate , 2007 .

[22]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[23]  Alok Sutradhar,et al.  Symmetric Galerkin Boundary Element Method , 2008 .

[24]  Jon Trevelyan,et al.  Coupling of the boundary element method and the scaled boundary finite element method for computations in fracture mechanics , 2008 .

[25]  Chongmin Song,et al.  The scaled boundary finite element method in structural dynamics , 2009 .

[26]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[27]  Ean Tat Ooi,et al.  A hybrid finite element-scaled boundary finite element method for crack propagation modelling , 2010 .

[28]  C. Augarde,et al.  A coupled BEM/scaled boundary FEM formulation for accurate computations in linear elastic fracture mechanics , 2010 .

[29]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[30]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[31]  T. Belytschko,et al.  X‐FEM in isogeometric analysis for linear fracture mechanics , 2011 .

[32]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[33]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[34]  Guohua Liu,et al.  An h-hierarchical adaptive scaled boundary finite element method for elastodynamics , 2011 .

[35]  A. Deeks,et al.  An Element-free Galerkin (EFG) scaled boundary method , 2012 .

[36]  S. Natarajan,et al.  Representation of singular fields without asymptotic enrichment in the extended finite element method , 2012, 1212.6957.

[37]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[38]  J. Trevelyan,et al.  An isogeometric boundary element method for elastostatic analysis: 2D implementation aspects , 2013, 1302.5305.

[39]  F. Tin-Loi,et al.  Polygon scaled boundary finite elements for crack propagation modelling , 2012 .

[40]  Phill-Seung Lee,et al.  Phantom-node method for shell models with arbitrary cracks , 2012 .

[41]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[42]  Wei Gao,et al.  Fracture analysis of piezoelectric materials using the scaled boundary finite element method , 2013 .

[43]  F. Tin-Loi,et al.  Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique , 2013 .

[44]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[45]  Haojie Lian,et al.  Sensitivity Analysis and Shape Optimisation through a T-spline Isogeometric Boundary Element Method , 2013 .

[46]  Timon Rabczuk,et al.  Reproducing Kernel Triangular B-spline-based FEM for Solving PDEs , 2013 .

[47]  Timon Rabczuk,et al.  Element-wise fracture algorithm based on rotation of edges , 2013 .

[48]  T. Rabczuk,et al.  Optimization of fiber distribution in fiber reinforced composite by using NURBS functions , 2014 .

[49]  Stéphane Bordas,et al.  Isogeometric analysis of functionally graded plates using a refined plate theory , 2014 .

[50]  Vinh Phu Nguyen,et al.  Two- and three-dimensional isogeometric cohesive elements for composite delamination analysis , 2014, Composites Part B: Engineering.

[51]  Hae-Soo Oh,et al.  Enriched isogeometric analysis of elliptic boundary value problems in domains with cracks and/or corners , 2014 .

[52]  M. Scott,et al.  Acoustic isogeometric boundary element analysis , 2014 .

[53]  Cv Clemens Verhoosel,et al.  An isogeometric continuum shell element for non-linear analysis , 2014 .

[54]  S. Natarajan,et al.  Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation , 2014 .

[55]  A. Deeks,et al.  Use of Fourier shape functions in the scaled boundary method , 2014 .

[56]  Gao Lin,et al.  Scaled boundary isogeometric analysis for 2D elastostatics , 2014 .

[57]  Joseph E. Bishop,et al.  A displacement‐based finite element formulation for general polyhedra using harmonic shape functions , 2014 .

[58]  A. Deeks,et al.  Using fundamental solutions in the scaled boundary finite element method to solve problems with concentrated loads , 2014 .

[59]  Stéphane Bordas,et al.  Damage tolerance assessment directly from CAD: (extended) isogeometric boundary element methods , 2014 .

[60]  Fabian Bause,et al.  On the computation of dispersion curves for axisymmetric elastic waveguides using the Scaled Boundary Finite Element Method , 2014 .

[61]  Timon Rabczuk,et al.  Extended isogeometric analysis for material interface problems , 2015 .

[62]  Vinh Phu Nguyen,et al.  Isogeometric analysis: An overview and computer implementation aspects , 2012, Math. Comput. Simul..