Diamond as a material for monolithically integrated optical and optomechanical devices

Diamond provides superior optical and mechanical material properties, making it a prime candidate for the realization of integrated optomechanical circuits. Because diamond substrates have matured in size, efficient nanostructuring methods can be used to realize full-scale integrated devices. Here we review optical and mechanical resonators fabricated from polycrystalline as well as single crystalline diamond. We present relevant material properties with respect to implementing optomechanical devices and compare them with other material systems. We give an overview of diamond integrated optomechanical circuits and present the optical readout mechanism and the actuation via optical or electrostatic forces that have been implemented to date. By combining diamond nanophotonic circuits with superconducting nanowires single photons can be efficiently detected on such chips and we outline how future single photon optomechanical circuits can be realized on this platform.

[1]  W. Pernice,et al.  High-Q optomechanical circuits made from polished nanocrystalline diamond thin films , 2014, 1403.5663.

[2]  SCHEME TO PROBE THE DECOHERENCE OF A MACROSCOPIC OBJECT , 1997, quant-ph/9712017.

[3]  K. Vahala,et al.  Static and dynamic wavelength routing via the gradient optical force , 2009, 0905.3336.

[4]  T. Ohshima,et al.  Array of bright silicon-vacancy centers in diamond fabricated by low-energy focused ion beam implantation , 2014 .

[5]  M. Aspelmeyer,et al.  Laser cooling of a nanomechanical oscillator into its quantum ground state , 2011, Nature.

[6]  Diamond Nanophotonic Circuits Functionalized by Dip‐pen Nanolithography , 2014, 1410.3539.

[7]  Qiang Lin,et al.  Supplementary Information for “ Electromagnetically Induced Transparency and Slow Light with Optomechanics ” , 2011 .

[8]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[9]  H. Tang,et al.  A 1.16-μm-radius disk cavity in a sunflower-type circular photonic crystal with ultrahigh quality factor. , 2012, Optics letters.

[10]  M. Liao,et al.  Batch production of single-crystal diamond bridges and cantilevers for microelectromechanical systems , 2010 .

[11]  Dirk Englund,et al.  Coherent spin control of a nanocavity-enhanced qubit in diamond , 2014, Nature Communications.

[12]  Christoph Pauly,et al.  Nanoimplantation and Purcell enhancement of single NV centers in photonic crystal cavities in diamond , 2015, 1503.05666.

[13]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[14]  S. Gsell,et al.  Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. , 2014, Nano letters.

[15]  J. Teufel,et al.  Circuit cavity electromechanics in the strong-coupling regime , 2010, Nature.

[16]  W H P Pernice,et al.  Waferscale nanophotonic circuits made from diamond-on-insulator substrates. , 2013, Optics express.

[17]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[18]  P. Bergonzo,et al.  Optical Analysis of p‐Type Surface Conductivity in Diamond with Slotted Photonic Crystals , 2013 .

[19]  Michael Siegel,et al.  Superconducting single photon detectors integrated with diamond nanophotonic circuits , 2015 .

[20]  Kate Fox,et al.  An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis. , 2014, Biomaterials.

[21]  Observation of Half-Height Magnetization Steps in Sr2RuO4 , 2011, Science.

[22]  David O. Bracher,et al.  Deterministic coupling of delta-doped NV centers to a nanobeam photonic crystal cavity , 2014, 1411.0725.

[23]  C. Degen,et al.  Facile Fabrication of Single‐Crystal‐Diamond Nanostructures with Ultrahigh Aspect Ratio , 2013, Advanced materials.

[24]  Matthias Imboden,et al.  High quality factor gigahertz frequencies in nanomechanical diamond resonators , 2007, 0710.2613.

[25]  Kerry J. Vahala,et al.  Coherent mixing of mechanical excitations in nano-optomechanical structures , 2009, 0908.1128.

[26]  H. Tang,et al.  High-Q silicon optomechanical microdisk resonators at gigahertz frequencies , 2012, 1204.3605.

[27]  Chi Xiong,et al.  Integrated high frequency aluminum nitride optomechanical resonators , 2012 .

[28]  Andrei Faraon,et al.  Quantum photonic devices in single-crystal diamond , 2013 .

[29]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[30]  O. Arcizet,et al.  High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators , 2008, 0805.1608.

[31]  G. J. Milburn,et al.  Single-photon opto-mechanics in the strong coupling regime , 2010, 1002.1517.

[32]  Triangular nanobeam photonic cavities in single-crystal diamond , 2011, 1101.1367.

[33]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[34]  Wolfram H. P. Pernice,et al.  Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate , 2013, Scientific Reports.

[35]  D. N. Jamieson,et al.  Characterization of three-dimensional microstructures in single-crystal diamond , 2006, 1609.00289.

[36]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[37]  Yuh-Chung Hu,et al.  Fabrication of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology , 2007 .

[38]  C. Degen,et al.  Single-crystal diamond nanomechanical resonators with quality factors exceeding one million , 2012, Nature Communications.

[39]  Patrik Rath,et al.  Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films , 2013, Beilstein journal of nanotechnology.

[40]  Amit Vainsencher,et al.  Nanomechanical coupling between microwave and optical photons , 2013, Nature Physics.

[41]  T. Baehr‐Jones,et al.  Harnessing optical forces in integrated photonic circuits , 2008, Nature.

[42]  Fabrication of thin diamond membranes for photonic applications , 2012, 1210.0125.

[43]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[44]  Christoph E. Nebel,et al.  Diamond for bio-sensor applications , 2007, 2005.03887.

[45]  P. Ovartchaiyapong,et al.  High quality factor single-crystal diamond mechanical resonators , 2012 .

[46]  Processing of photonic crystal nanocavity for quantum information in diamond , 2010, 1012.5878.

[47]  O. Williams,et al.  High Young's modulus in ultra thin nanocrystalline diamond , 2010 .

[48]  W. Pernice,et al.  Broadband all-photonic transduction of nanocantilevers. , 2009, Nature nanotechnology.

[49]  Richard P. Mildren,et al.  Optical Engineering of Diamond , 2013 .

[50]  H. Kotera,et al.  Piezoresistive property of CVD diamond films , 1997 .

[51]  Peter Koidl,et al.  Novel microwave plasma reactor for diamond synthesis , 1998 .

[52]  Patrik Rath,et al.  Diamond-integrated optomechanical circuits , 2013, Nature Communications.

[53]  E. Kohn,et al.  Diamond MEMS — a new emerging technology , 1999 .

[54]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[55]  D. Englund,et al.  Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks , 2014, 1411.3639.

[56]  O. Williams,et al.  Chemical mechanical polishing of thin film diamond , 2013, 1308.1239.

[57]  M. Markham,et al.  Coupling of NV centers to photonic crystal nanobeams in diamond. , 2013, Nano letters.

[58]  M. Lipson,et al.  Controlling photonic structures using optical forces , 2009, Nature.

[59]  Qianfan Xu,et al.  Guiding and confining light in void nanostructure. , 2004, Optics letters.

[60]  H. Tang,et al.  Prospect of detecting single-photon-force effects in cavity optomechanics , 2014, 1404.5574.

[61]  Marko Lonvcar,et al.  Single-color centers implanted in diamond nanostructures , 2010, 1009.4224.

[62]  J. Graebner Measurements of Thermal Conductivity and Thermal Diffusivity of CVD Diamond , 1998 .

[63]  S. Ummethala,et al.  Diamond electro-optomechanical resonators integrated in nanophotonic circuits , 2014 .

[64]  S. Girvin,et al.  Single-photon optomechanics. , 2011, Physical review letters.

[65]  E Obermeier,et al.  Thermal conductivity measurements on thin films based on micromechanical devices , 1996 .

[66]  Diamond processing by focused ion beam—surface damage and recovery , 2011, 1108.0850.

[67]  Kenneth W. Lee,et al.  Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator , 2014, Nature communications.

[68]  P. Rabl,et al.  Photon blockade effect in optomechanical systems. , 2011, Physical review letters.

[69]  J. Teufel,et al.  Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.

[70]  Satoshi Fujii,et al.  Diamond-based surface acoustic wave devices , 2003 .

[71]  Aiden A. Martin,et al.  Electron beam controlled restructuring of luminescence centers in polycrystalline diamond. , 2014, ACS applied materials & interfaces.

[72]  A. Hamed Majedi,et al.  Superconducting nanowire single photon detector on diamond , 2014, 1401.4490.

[73]  Igor Aharonovich,et al.  Homoepitaxial Growth of Single Crystal Diamond Membranes for Quantum Information Processing , 2011, Advanced materials.

[74]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[75]  A. B. Manukin,et al.  Measurement of Weak Forces in Physics Experiments , 1977 .

[76]  Oskar Painter,et al.  Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces , 2007 .

[77]  P. Appel,et al.  Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. , 2014, Physical review letters.

[78]  G. J. Milburn,et al.  Entangled mechanical cat states via conditional single photon optomechanics , 2013, 1305.3781.

[79]  E. Hu,et al.  Coupling of Silicon-Vacancy Centers to a Single Crystal Diamond Cavity , 2012 .

[80]  Anirudha V. Sumant,et al.  MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films , 2014 .

[81]  O. Shimoni,et al.  Study of narrowband single photon emitters in polycrystalline diamond films , 2014, 1408.4291.

[82]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[83]  J. Robinson,et al.  Ultrathin single crystal diamond nanomechanical dome resonators. , 2011, Nano letters.

[84]  Wooyoung Hong,et al.  High quality-factor optical nanocavities in bulk single-crystal diamond , 2014, Nature Communications.

[85]  N. Bloembergen,et al.  Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media , 1974 .

[86]  James E. Butler,et al.  Observation of whispering gallery modes in nanocrystalline diamond microdisks , 2007 .

[87]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[88]  H. Tang,et al.  Broadband nanoelectromechanical phase shifting of light on a chip , 2013, 1312.2454.

[89]  H. Tang,et al.  A 10-GHz film-thickness-mode cavity optomechanical resonator , 2015 .

[90]  W. Pernice,et al.  Tunable bipolar optical interactions between guided lightwaves , 2009, 0903.5117.

[91]  K. Haenen,et al.  CVD diamond—Research, applications, and challenges , 2014 .

[92]  S. Bhave,et al.  Mechanical spin control of nitrogen-vacancy centers in diamond. , 2013, Physical review letters.

[93]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[94]  J. Butler,et al.  CVD-diamond external cavity Raman laser at 573 nm. , 2008, Optics express.

[95]  Soumen Mandal,et al.  Superconducting nano-mechanical diamond resonators , 2014, 1401.7162.

[96]  E. Ginossar,et al.  Persistent Currents in Normal Metal Rings , 2009, Science.

[97]  R. Gross,et al.  On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors , 2013, Scientific reports.

[98]  P. Hess The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal , 2012 .

[99]  Ronald Hanson,et al.  Fabrication and Characterization of Two-Dimensional Photonic Crystal Microcavities in Nanocrystalline Diamond , 2007 .

[100]  Ivan Favero,et al.  Optomechanics of deformable optical cavities , 2009 .

[101]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[102]  Nanomechanical resonant structures in single-crystal diamond , 2013, 1309.1834.

[103]  K. Jacobs,et al.  Preparation of nonclassical states in cavities with a moving mirror , 1997 .

[104]  D. Horsley,et al.  High quality factor nanocrystalline diamond micromechanical resonators limited by thermoelastic damping , 2014 .

[105]  Patrick Maletinsky,et al.  Integrated diamond networks for quantum nanophotonics. , 2011, Nano letters.

[106]  I. Walmsley,et al.  Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond , 2011, Nature Photonics.

[107]  T. Krauss,et al.  An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers , 2002 .

[108]  A. Zaitsev,et al.  Optical properties of diamond , 2001 .

[109]  Igor Aharonovich,et al.  Subtractive 3D Printing of Optically Active Diamond Structures , 2014, Scientific reports.

[110]  D. Aslam,et al.  High-Performance Polycrystalline Diamond Micro- and Nanoresonators , 2008, Journal of Microelectromechanical Systems.

[111]  M. Lukin,et al.  Free-standing mechanical and photonic nanostructures in single-crystal diamond. , 2012, Nano letters.

[112]  J. Butler,et al.  Dissipation in single crystal diamond micromechanical annular plate resonators , 2011 .

[113]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[114]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[115]  T. Umeda,et al.  Long coherence time of spin qubits in 12C enriched polycrystalline chemical vapor deposition diamond , 2012, 1206.4260.

[116]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.