Energy Compression and Stabilization of Laser-Plasma Accelerators.

Laser-plasma accelerators outperform current radio frequency technology in acceleration strength by orders of magnitude. Yet, enabling them to deliver competitive beam quality for demanding applications, particularly in terms of energy spread and stability, remains a major challenge. In this Letter, we propose to combine bunch decompression and active plasma dechirping for drastically improving the energy profile and stability of beams from laser-plasma accelerators. Realistic start-to-end simulations demonstrate the potential of these postacceleration phase-space manipulations for simultaneously reducing an initial energy spread and energy jitter of ∼1-2% to ≲0.1%, closing the beam-quality gap to conventional acceleration schemes.

[1]  Stefan M. Wild,et al.  libEnsemble: A Library to Coordinate the Concurrent Evaluation of Dynamic Ensembles of Calculations , 2021, IEEE Transactions on Parallel and Distributed Systems.

[2]  I. Agapov,et al.  Design of a prototype laser-plasma injector for an electron synchrotron , 2021, Physical Review Accelerators and Beams.

[3]  Zhi‐zhan Xu,et al.  Free-electron lasing at 27 nanometres based on a laser wakefield accelerator , 2021, Nature.

[4]  Z. Qin,et al.  Near-GeV Electron Beams at a Few Per-Mille Level from a Laser Wakefield Accelerator via Density-Tailored Plasma. , 2021, Physical review letters.

[5]  P. Winkler,et al.  Optimal Beam Loading in a Laser-Plasma Accelerator. , 2021, Physical review letters.

[6]  R. Lehe,et al.  Bayesian Optimization of a Laser-Plasma Accelerator. , 2021, Physical review letters.

[7]  C. A. Lindstrom,et al.  Staging of plasma-wakefield accelerators , 2020, Physical Review Accelerators and Beams.

[8]  Zhi‐zhan Xu,et al.  Performance improvement of a 200TW/1Hz Ti:sapphire laser for laser wakefield electron accelerator , 2020 .

[9]  R. Assmann,et al.  Longitudinal phase space synthesis with tailored 3D-printable dielectric-lined waveguides , 2020, Physical Review Accelerators and Beams.

[10]  P. Winkler,et al.  Decoding Sources of Energy Variability in a Laser-Plasma Accelerator , 2020, Physical Review X.

[11]  N. Bourgeois,et al.  Automation and control of laser wakefield accelerators using Bayesian optimization , 2020, Nature Communications.

[12]  P. Gecys,et al.  Demonstration of stable long-term operation of a kilohertz laser-plasma accelerator , 2020, 2005.06929.

[13]  R. Assmann,et al.  Wake-T: a fast particle tracking code for plasma-based accelerators , 2019, Journal of Physics: Conference Series.

[14]  R. Assmann,et al.  Compact Multistage Plasma-Based Accelerator Design for Correlated Energy Spread Compensation. , 2019, Physical review letters.

[15]  Zulfikar Najmudin,et al.  Laser wakefield acceleration with active feedback at 5 Hz , 2019, Physical Review Accelerators and Beams.

[16]  J. Zhang,et al.  Phase Space Dynamics of a Plasma Wakefield Dechirper for Energy Spread Reduction. , 2019, Physical review letters.

[17]  A Mostacci,et al.  Longitudinal Phase-Space Manipulation with Beam-Driven Plasma Wakefields. , 2019, Physical review letters.

[18]  G Korn,et al.  Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide. , 2019, Physical review letters.

[19]  Dorian Krause,et al.  JUWELS: Modular Tier-0/1 Supercomputer at Jülich Supercomputing Centre , 2019, Journal of large-scale research facilities JLSRF.

[20]  J Osterhoff,et al.  Tunable Plasma-Based Energy Dechirper. , 2018, Physical review letters.

[21]  W. Mori,et al.  Near-Ideal Dechirper for Plasma-Based Electron and Positron Acceleration Using a Hollow Channel Plasma , 2018, Physical Review Applied.

[22]  R. Assmann,et al.  Intrinsic energy spread and bunch length growth in plasma-based accelerators due to betatron motion , 2018, Scientific Reports.

[23]  Xiangkun Li,et al.  Toward low energy spread in plasma accelerators in quasilinear regime , 2018, Physical Review Accelerators and Beams.

[24]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[25]  A. Huebl,et al.  Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator , 2017, Nature Communications.

[26]  J. Cary,et al.  Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams , 2017, Nature Communications.

[27]  Alberto Martinez de la Ossa,et al.  VisualPIC: A New Data Visualizer and Post-Processor for Particle-in-Cell Codes , 2017 .

[28]  R. Brinkmann,et al.  External injection into a laser-driven plasma accelerator with sub-femtosecond timing jitter , 2017 .

[29]  Jun Zhu,et al.  A Concept for Phase-Synchronous Acceleration of Microbunch Trains in DLA Structures at SINBAD , 2017 .

[30]  B. Schmidt,et al.  Chirp Mitigation of Plasma-Accelerated Beams by a Modulated Plasma Density. , 2016, Physical review letters.

[31]  Jean-Luc Vay,et al.  Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates. , 2016, Physical review. E.

[32]  J. Vay,et al.  Stable discrete representation of relativistically drifting plasmas , 2016, 1608.00215.

[33]  A. J. Gonsalves,et al.  Multistage coupling of independent laser-plasma accelerators , 2016, Nature.

[34]  Jean-Luc Vay,et al.  A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm , 2015, Comput. Phys. Commun..

[35]  K. Nakamura,et al.  Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams. , 2015, Physical review letters.

[36]  J. Nees,et al.  Coherent control of plasma dynamics by feedback-optimized wavefront manipulationa) , 2015 .

[37]  Lingrong Zhao,et al.  Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures. , 2015, Physical review letters.

[38]  C. Schmidt,et al.  Femtosecond all-optical synchronization of an X-ray free-electron laser , 2015, Nature Communications.

[39]  S. Sebban,et al.  Demonstration of relativistic electron beam focusing by a laser-plasma lens , 2014, Nature Communications.

[40]  J. Nees,et al.  Coherent control of plasma dynamics , 2014, Nature Communications.

[41]  Gianluca Geloni,et al.  OCELOT: A software framework for synchrotron light source and FEL studies , 2014 .

[42]  Victor Malka,et al.  Laser-plasma lens for laser-wakefield accelerators , 2014 .

[43]  K. Nakamura,et al.  Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. , 2014, Physical review letters.

[44]  C. Swinson,et al.  Experimental demonstration of energy-chirp compensation by a tunable dielectric-based structure. , 2013, Physical review letters.

[45]  R. Assmann,et al.  Study of Laser Wakefield Accelerators as injectors for Synchrotron light sources , 2014 .

[46]  L. Serafini,et al.  Intrinsic normalized emittance growth in laser-driven electron accelerators , 2013 .

[47]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[48]  Ferenc Krausz,et al.  Ultralow emittance electron beams from a laser-wakefield accelerator , 2012 .

[49]  A. Maier,et al.  Demonstration scheme for a laser-plasma driven free-electron laser , 2012 .

[50]  Gennady Stupakov,et al.  Corrugated Pipe as a Beam Dechirper , 2012 .

[51]  J Osterhoff,et al.  Long-range persistence of femtosecond modulations on laser-plasma-accelerated electron beams. , 2012, Physical review letters.

[52]  Eric Esarey,et al.  Modeling of 10 GeV-1 Tev Laser Plasma Accelerators Using Lorentz Boosted Simulations , 2011 .

[53]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[54]  S. M. Wiggins,et al.  Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. , 2010, Physical review letters.

[55]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[56]  Rasmus Ischebeck,et al.  Phase stable net acceleration of electrons from a two-stage optical accelerator , 2008 .

[57]  J. Vieira,et al.  Beam loading in the nonlinear regime of plasma-based acceleration. , 2008, Physical review letters.

[58]  Kazuhisa Nakajima,et al.  Towards a table-top free-electron laser , 2008 .

[59]  J. Vay,et al.  Noninvariance of space- and time-scale ranges under a Lorentz Transformation and the implications for the study of relativistic interactions. , 2007, Physical review letters.

[60]  Wei Lu,et al.  A nonlinear theory for multidimensional relativistic plasma wave wakefieldsa) , 2006 .

[61]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[62]  K. Lotov Efficient operating mode of the plasma wakefield accelerator , 2005 .

[63]  S. Kiselev,et al.  Phenomenological theory of laser-plasma interaction in ``bubble'' regime , 2004 .

[64]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[65]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[66]  Wim Leemans,et al.  Trapping, dark current, and wave breaking in nonlinear plasma waves , 2004 .

[67]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[68]  V Malka,et al.  Emittance measurements of a laser-wakefield-accelerated electron beam. , 2004, Physical review letters.

[69]  G. Krafft,et al.  Longitudinal Phase Space Manipulation in Energy Recovering Linac-Driven Free-Electron Lasers , 2002, physics/0211048.

[70]  M. Santarsiero,et al.  Focusing of axially symmetric flattened Gaussian beams , 1997 .

[71]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[72]  S. V. D. Meer Improving the power efficiency of the plasma wakefield accelerator , 1985 .

[73]  W. Gillespie,et al.  The energy compressor at the Glasgow 170 MeV electron linac , 1981 .

[74]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .