Parameter inference for stochastic kinetic models of bacterial gene regulation : a Bayesian approach to systems biology

We thank all of the discussants for their valuable insights and elaborations. In particular, we thank Prof. Clarke and Dr. Severinski for their conjectured extension to Theorem 3, the product of many personal discussions both in Austin and in Spain (and probably many more hours of work in Miami). The conjecture seems quite likely to be true, and strikes us as a nice way of understanding adaptive penalty functions and infinite-dimensional versions of the corresponding shrinkage priors. Rather than respond to each of the six discussions in turn, we have grouped the comments into three rough categories.

[1]  M. West Outlier Models and Prior Distributions in Bayesian Linear Regression , 1984 .

[2]  Malay Ghosh,et al.  On the Stein phenomenon under divergence loss and an unknown variance-covariance matrix , 2009, J. Multivar. Anal..

[3]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[4]  David Heckerman,et al.  Learning Gaussian Networks , 1994, UAI.

[5]  C. D. Litton,et al.  Theory of Probability (3rd Edition) , 1984 .

[6]  Chris Hans Bayesian lasso regression , 2009 .

[7]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[8]  Murray Aitkin,et al.  Bayesian point null hypothesis testing via the posterior likelihood ratio , 2005, Stat. Comput..

[9]  Darren J. Wilkinson,et al.  CaliBayes and BASIS: integrated tools for the calibration, simulation and storage of biological simulation models , 2010, Briefings Bioinform..

[10]  David Maxwell Chickering,et al.  A Clinician's Tool for Analyzing Non-Compliance , 1996, AAAI/IAAI, Vol. 2.

[11]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[12]  Stephen G. Walker,et al.  Slice sampling mixture models , 2011, Stat. Comput..

[13]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[14]  B. Grigelionis,et al.  Generalized z-Distributions and Related Stochastic Processes , 2001 .

[15]  Marina Vannucci,et al.  Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data , 2011, Bioinform..

[16]  James O. Berger,et al.  Objective Bayesian Methods for Model Selection: Introduction and Comparison , 2001 .

[17]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[18]  Dominique Fourdrinier,et al.  Bayes minimax estimators of the mean of a scale mixture of multivariate normal distributions , 2008 .

[19]  Panagiotis Besbeas,et al.  A Bayesian decision theory approach to variable selection for discrimination , 2002, Stat. Comput..

[20]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[21]  Fan Tsai-Hung,et al.  BEHAVIOUR OF THE POSTERIOR DISTRIBUTION AND INFERENCES FOR A NORMAL MEAN WITH t PRIOR DISTRIBUTIONS , 1992 .

[22]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[23]  Thomas Brendan Murphy,et al.  Variable Selection and Updating In Model-Based Discriminant Analysis for High Dimensional Data with Food Authenticity Applications. , 2010, The annals of applied statistics.

[24]  W. Jefferys Bayesian Analysis of Random Event Generator Data , 1990 .

[25]  M. West,et al.  Sparse graphical models for exploring gene expression data , 2004 .

[26]  Malay Ghosh,et al.  Estimation, prediction and the Stein phenomenon under divergence loss , 2008 .

[27]  Sylvia Richardson,et al.  Evolutionary Stochastic Search for Bayesian model exploration , 2010, 1002.2706.

[28]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[29]  Peter Müller,et al.  MODELING DEPENDENT GENE EXPRESSION. , 2012, Annals of statistics.

[30]  J. Errington,et al.  Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. , 1993, Microbiological reviews.

[31]  M. West,et al.  Shotgun Stochastic Search for “Large p” Regression , 2007 .

[32]  M. Bartlett A comment on D. V. Lindley's statistical paradox , 1957 .

[33]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[34]  S. Karlin Admissibility for Estimation with Quadratic Loss , 1958 .

[35]  G. Casella,et al.  Reconciling Bayesian and Frequentist Evidence in the One-Sided Testing Problem , 1987 .

[36]  James O. Berger,et al.  Subjective Hierarchical Bayes Estimation of a Multivariate Normal Mean: On the Frequentist Interface , 1990 .

[37]  James G. Scott,et al.  Local shrinkage rules, Lévy processes and regularized regression , 2010, 1010.3390.

[38]  Andrew J. Millar,et al.  Reconstruction of transcriptional dynamics from gene reporter data using differential equations , 2008, Bioinform..

[39]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[40]  Marc Yor,et al.  CGMY and Meixner Subordinators are Absolutely Continuous with respect to One Sided Stable Subordinators. , 2006 .

[41]  Sylvia Frühwirth-Schnatter,et al.  Finite Mixture and Markov Switching Models , 2006 .

[42]  M. Clyde,et al.  Flexible empirical Bayes estimation for wavelets , 2000 .

[43]  J. Skilling Nested sampling for general Bayesian computation , 2006 .

[44]  A. Raftery,et al.  Variable Selection for Model-Based Clustering , 2006 .

[45]  P. Green,et al.  Bayesian Model-Based Clustering Procedures , 2007 .

[46]  Michael A. West,et al.  Archival Version including Appendicies : Experiments in Stochastic Computation for High-Dimensional Graphical Models , 2005 .

[47]  J. Berger The case for objective Bayesian analysis , 2006 .

[48]  O. Barndorff-Nielsen,et al.  Normal Variance-Mean Mixtures and z Distributions , 1982 .

[49]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  E. George Combining Minimax Shrinkage Estimators , 1986 .

[51]  Darren J. Wilkinson,et al.  Bayesian Sequential Inference for Stochastic Kinetic Biochemical Network Models , 2006, J. Comput. Biol..

[52]  S. Ghosal,et al.  Kullback Leibler property of kernel mixture priors in Bayesian density estimation , 2007, 0710.2746.

[53]  Bertrand Clarke,et al.  A minimally informative likelihood for decision analysis: illustration and robustness , 1999 .

[54]  S. Frühwirth-Schnatter,et al.  Data Augmentation and MCMC for Binary and Multinomial Logit Models , 2010 .

[55]  Martin B. Hansen,et al.  A Nonparametric Bayesian Approach to Inverse Problems , 2003 .

[56]  Rubin Herman,et al.  A WEAK SYSTEM OF AXIOMS FOR "RATIONAL" BEHAVIOR AND THE NONSEPARABILITY OF UTILITY FROM PRIOR , 1987 .

[57]  C. Robert,et al.  Properties of nested sampling , 2008, 0801.3887.

[58]  B. Efron,et al.  Compliance as an Explanatory Variable in Clinical Trials , 1991 .

[59]  B. Carlin,et al.  Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .

[60]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[61]  R. Losick,et al.  Cell population heterogeneity during growth of Bacillus subtilis. , 2005, Genes & development.

[62]  Judea Pearl,et al.  An Algorithm for Deciding if a Set of Observed Independencies Has a Causal Explanation , 1992, UAI.

[63]  J. Pearl,et al.  Bounds on Treatment Effects from Studies with Imperfect Compliance , 1997 .

[64]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[65]  Wilfred Perks,et al.  Some observations on inverse probability including a new indifference rule , 1947 .

[66]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[67]  Nozer D. Singpurwalla Some Cracks in the Empire of Chance (Flaws in the Foundations of Reliability) , 2002 .

[68]  Michael I. Jordan,et al.  Tree-Structured Stick Breaking for Hierarchical Data , 2010, NIPS.

[69]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[70]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[71]  Blai Bonet,et al.  Instrumentality Tests Revisited , 2001, UAI.

[72]  José M. Bernardo Objective Bayesian point and region estimation in location-scale models , 2007 .

[73]  Thomas L. Griffiths,et al.  The nested Chinese restaurant process and Bayesian inference of topic hierarchies , 2007 .

[74]  Nicholas G. Polson,et al.  Inference for nonconjugate Bayesian Models using the Gibbs sampler , 1991 .

[75]  R. Wilkinson Approximate Bayesian computation (ABC) gives exact results under the assumption of model error , 2008, Statistical applications in genetics and molecular biology.

[76]  N. Yi,et al.  Advances in Bayesian multiple quantitative trait loci mapping in experimental crosses , 2008, Heredity.

[77]  Lizbeth Padilla,et al.  Funciones iniciales de referencia para predicción bayesiana , 2011 .

[78]  Sylvia Frühwirth-Schnatter,et al.  Auxiliary mixture sampling with applications to logistic models , 2007, Comput. Stat. Data Anal..

[79]  T. Fearn,et al.  Bayes model averaging with selection of regressors , 2002 .

[80]  T. Kurtz,et al.  Submitted to the Annals of Applied Probability ASYMPTOTIC ANALYSIS OF MULTISCALE APPROXIMATIONS TO REACTION NETWORKS , 2022 .

[81]  A. Gelman Objections to Bayesian statistics , 2008 .

[82]  E. Fama,et al.  The CAPM is Wanted, Dead or Alive , 1996 .

[83]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[84]  S. Frühwirth-Schnatter,et al.  Bayesian Analysis of the Heterogeneity Model , 2004 .

[85]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[86]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[87]  J. Berger A Robust Generalized Bayes Estimator and Confidence Region for a Multivariate Normal Mean , 1980 .

[88]  Mark F. J. Steel,et al.  On the effect of prior assumptions in Bayesian model averaging with applications to growth regression , 2009 .

[89]  J. York,et al.  Bayesian Graphical Models for Discrete Data , 1995 .

[90]  J. Ghosh,et al.  An Introduction to Bayesian Analysis: Theory and Methods , 2006 .

[91]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[92]  Sach Mukherjee,et al.  Network inference using informative priors , 2008, Proceedings of the National Academy of Sciences.

[93]  J. Bernardo Expected Information as Expected Utility , 1979 .

[94]  D. Dunson,et al.  Bayesian Covariance Selection in Generalized Linear Mixed Models , 2006, Biometrics.

[95]  A. Roverato Hyper Inverse Wishart Distribution for Non-decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models , 2002 .

[96]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[97]  Walter Racugno,et al.  An Intrinsic Limiting Procedure for Model Selection and Hypotheses Testing , 1998 .

[98]  Yuzo Maruyama,et al.  Stein's idea and minimax admissible estimation of a multivariate normal mean , 2004 .

[99]  S. Frühwirth-Schnatter,et al.  Stochastic model specification search for Gaussian and partial non-Gaussian state space models , 2010 .

[100]  Paul Gustafson,et al.  Bayesian multinomial regression with class-specific predictor selection , 2009, 0901.4208.

[101]  Darren J. Wilkinson,et al.  Bayesian inference for a discretely observed stochastic kinetic model , 2008, Stat. Comput..

[102]  Martin Crowder,et al.  Beta-binomial Anova for Proportions , 1978 .

[103]  Jeffrey R Curtis,et al.  Adaptation of Bayesian Data Mining Algorithms to Longitudinal Claims Data: Coxib Safety as an Example , 2008, Medical care.

[104]  Roland R. Ramsahai,et al.  Causal inference with instruments and other supplementary variables , 2008 .

[105]  Hugh Chipman,et al.  Bayesian variable selection with related predictors , 1995, bayes-an/9510001.

[106]  B. Grigelionis,et al.  Processes of Meixner type , 1999 .

[107]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[108]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[109]  R. Kohn,et al.  Parsimonious Covariance Matrix Estimation for Longitudinal Data , 2002 .

[110]  Katja Ickstadt,et al.  Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose–Response Analysis , 2009, Biometrics.

[111]  Paloma Main,et al.  Extreme inaccuracies in Gaussian Bayesian networks , 2008 .

[112]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[113]  J. Geweke,et al.  Variable selection and model comparison in regression , 1994 .

[114]  J. Bernardo,et al.  Intrinsic credible regions: An objective Bayesian approach to interval estimation , 2005 .

[115]  E. Fama,et al.  The Capital Asset Pricing Model: Theory and Evidence , 2003 .

[116]  J. Bernardo,et al.  Bayesian Hypothesis Testing: a Reference Approach , 2002 .

[117]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[118]  C. Holmes,et al.  Bayesian auxiliary variable models for binary and multinomial regression , 2006 .

[119]  Jun S. Liu,et al.  Bayesian Clustering with Variable and Transformation Selections , 2003 .

[120]  E. Klipp,et al.  Biochemical networks with uncertain parameters. , 2005, Systems biology.

[121]  J. Besag A candidate's formula: A curious result in Bayesian prediction , 1989 .

[122]  H. Jeffreys An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[123]  Sylvia Frühwirth-Schnatter,et al.  Computational Statistics and Data Analysis Marginal Likelihoods for Non-gaussian Models Using Auxiliary Mixture Sampling , 2022 .

[124]  Thomas S. Shively,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior , 1999 .

[125]  Christopher J Paciorek,et al.  Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.

[126]  Ludwig Fahrmeir,et al.  Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection , 2010, Stat. Comput..

[127]  Joseph G. Ibrahim,et al.  Prior elicitation for model selection and estimation in generalized linear mixed models , 2003 .

[128]  A. Pettitt,et al.  Marginal likelihood estimation via power posteriors , 2008 .

[129]  Lancelot F. James,et al.  Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .

[130]  J. Dickey,et al.  Bayes factors for independence in contingency tables , 1974 .

[131]  J. Kingman Random Discrete Distributions , 1975 .

[132]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[133]  Leonhard Held,et al.  Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data , 2009, Stat. Comput..

[134]  Marina Vannucci,et al.  Bayesian Variable Selection in Multinomial Probit Models to Identify Molecular Signatures of Disease Stage , 2004, Biometrics.

[135]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[136]  W. Strawderman Proper Bayes Minimax Estimators of the Multivariate Normal Mean , 1971 .

[137]  B. Yandell,et al.  Bayesian Quantitative Trait Loci Mapping for Multiple Traits , 2008, Genetics.

[138]  Barr Rosenberg,et al.  The Prediction of Systematic and Specific Risk in Common Stocks , 1973, Journal of Financial and Quantitative Analysis.

[139]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[140]  R. Mukerjee,et al.  Probability Matching Priors: Higher Order Asymptotics , 2004 .

[141]  J. Ghosh,et al.  A comparison of the Benjamini-Hochberg procedure with some Bayesian rules for multiple testing , 2008, 0805.2479.

[142]  J. Dick,et al.  Targeting of CD44 eradicates human acute myeloid leukemic stem cells , 2006, Nature Medicine.

[143]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[144]  T. Fearn,et al.  Bayesian wavelength selection in multicomponent analysis , 1998 .

[145]  P. Gustafson On Model Expansion, Model Contraction, Identifiability and Prior Information: Two Illustrative Scenarios Involving Mismeasured Variables , 2005 .

[146]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[147]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[148]  B. Kholodenko,et al.  Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. , 2000, European journal of biochemistry.

[149]  I. Johnstone,et al.  Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.

[150]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[151]  Lancelot F. James,et al.  Bayesian Model Selection in Finite Mixtures by Marginal Density Decompositions , 2001 .

[152]  A. Dawid The Well-Calibrated Bayesian , 1982 .

[153]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[154]  Marina Vannucci,et al.  Variable selection in clustering via Dirichlet process mixture models , 2006 .

[155]  A. O'Hagan,et al.  Fractional Bayes factors for model comparison , 1995 .

[156]  J. Roy,et al.  Conditional Inference Methods for Incomplete Poisson Data With Endogenous Time-Varying Covariates , 2006 .

[157]  Marina Vannucci,et al.  Identifying Biomarkers from Mass Spectrometry Data with Ordinal Outcome , 2007, Cancer informatics.

[158]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[159]  Mervyn Stone,et al.  Strong Inconsistency from Uniform Priors , 1976 .

[160]  Andrea Ongaro,et al.  Discrete random probability measures: a general framework for nonparametric Bayesian inference☆ , 2004 .

[161]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[162]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[163]  Shizhong Xu,et al.  Mapping Quantitative Trait Loci for Expression Abundance , 2007, Genetics.

[164]  D. McMillen,et al.  Dark proteins: Effect of inclusion body formation on quantification of protein expression , 2008, Proteins.

[165]  D. Gillespie The chemical Langevin equation , 2000 .

[166]  C. Kendziorski,et al.  Statistical Methods for Expression Quantitative Trait Loci (eQTL) Mapping , 2006, Biometrics.

[167]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[168]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[169]  P. Maín,et al.  A Bayesian analysis for the multivariate point null testing problem , 2009 .

[170]  John Lamperti,et al.  An occupation time theorem for a class of stochastic processes , 1958 .

[171]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[172]  Robert Kohn,et al.  Nonparametric regression using linear combinations of basis functions , 2001, Stat. Comput..

[173]  Peter E. Rossi,et al.  A bayesian approach to testing the arbitrage pricing theory , 1991 .

[174]  M. West On scale mixtures of normal distributions , 1987 .

[175]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[176]  Satkartar K. Kinney,et al.  Fixed and Random Effects Selection in Linear and Logistic Models , 2007, Biometrics.

[177]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[178]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[179]  Marco A. Rodríguez,et al.  Modelling seasonal increments in size to determine the onset of annual growth in fishes , 2008 .

[180]  Michael Hsiao,et al.  Vascular endothelial growth factor-C (VEGF-C) promotes angiogenesis by induction of COX-2 in leukemic cells via the VEGF-R3/JNK/AP-1 pathway. , 2009, Carcinogenesis.

[181]  S. Richardson,et al.  Interpreting Posterior Relative Risk Estimates in Disease-Mapping Studies , 2004, Environmental health perspectives.

[182]  C. Robert,et al.  Importance sampling methods for Bayesian discrimination between embedded models , 2009, 0910.2325.

[183]  Guido Consonni,et al.  Tests Based on Intrinsic Priors for the Equality of Two Correlated Proportions , 2008 .

[184]  C. Robert,et al.  Choice Among Hypotheses Using Estimation Criteria , 1997 .

[185]  Carlos M. Carvalho,et al.  Factor stochastic volatility with time varying loadings and Markov switching regimes , 2007 .

[186]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[187]  Seymour Geisser,et al.  On Prior Distributions for Binary Trials , 1984 .

[188]  Joseph G. Ibrahim,et al.  BAYESIAN VARIABLE SELECTION FOR TIME SERIES COUNT DATA , 2000 .

[189]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[190]  Peter D. Hoff,et al.  Model-based subspace clustering , 2006 .

[191]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[192]  M. Stone,et al.  Marginalization Paradoxes in Bayesian and Structural Inference , 1973 .

[193]  Qing Li,et al.  The Bayesian elastic net , 2010 .

[194]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[195]  R. A. Fisher,et al.  123: The Mathematical Distributions Used in the Common Tests of Significance. , 1935 .

[196]  T. Fearn,et al.  Multivariate Bayesian variable selection and prediction , 1998 .

[197]  P. Dellaportas,et al.  Bayesian variable and link determination for generalised linear models , 2003 .

[198]  R. Losick,et al.  Bacillus subtilis and Its Closest Relatives , 2002 .

[199]  R. Kohn,et al.  Nonparametric regression using Bayesian variable selection , 1996 .

[200]  D. Dubnau,et al.  Genetic competence in Bacillus subtilis. , 1991, Microbiological reviews.

[201]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[202]  Edward Leamer Regression Selection Strategies and Revealed Priors , 1978 .

[203]  J. Møller,et al.  An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants , 2006 .

[204]  Adrian F. M. Smith,et al.  Exact and Approximate Posterior Moments for a Normal Location Parameter , 1992 .

[205]  Radford M. Neal Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[206]  R. Tüchler Bayesian Variable Selection for Logistic Models Using Auxiliary Mixture Sampling , 2008 .

[207]  Judea Pearl,et al.  Bayesian Networks , 1998, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[208]  J. N. R. Jeffers,et al.  Graphical Models in Applied Multivariate Statistics. , 1990 .

[209]  D. Lindley A STATISTICAL PARADOX , 1957 .

[210]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[211]  R. O’Hara,et al.  A review of Bayesian variable selection methods: what, how and which , 2009 .

[212]  Sylvia Frühwirth-Schnatter,et al.  Bayesian parsimonious covariance estimation for hierarchical linear mixed models , 2008, Stat. Comput..

[213]  D. Gillespie A rigorous derivation of the chemical master equation , 1992 .

[214]  Chih-Jen Lin,et al.  A Comparison of Optimization Methods and Software for Large-scale L1-regularized Linear Classification , 2010, J. Mach. Learn. Res..

[215]  J. Griffin,et al.  Alternative prior distributions for variable selection with very many more variables than observations , 2005 .

[216]  Jiunn Tzon Hwang,et al.  Semi Tail Upper Bounds on the Class of Admissible Estimators in Discrete Exponential Families with Applications to Poisson and Negative Binomial Distributions , 1982 .

[217]  Mihye Ahn,et al.  Random Effect Selection in Linear Mixed Models. , 2010 .

[218]  Edward I. George,et al.  Empirical Bayes vs. Fully Bayes Variable Selection , 2008 .

[219]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[220]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[221]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[222]  D. Dunson,et al.  Random Effects Selection in Linear Mixed Models , 2003, Biometrics.

[223]  Nir Friedman,et al.  Being Bayesian about Network Structure , 2000, UAI.

[224]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[225]  Ghosal Subhashis,et al.  EXPANSION OF BAYES RISK FOR ENTROPY LOSS AND REFERENCE PRIOR IN NONREGULAR CASES , 1997 .

[226]  David Madigan,et al.  Pooled analysis of rofecoxib placebo-controlled clinical trial data: lessons for postmarket pharmaceutical safety surveillance. , 2009, Archives of internal medicine.

[227]  Gregory F. Cooper,et al.  A Bayesian method for the induction of probabilistic networks from data , 1992, Machine Learning.

[228]  Jean Jacod,et al.  Estimating the degree of activity of jumps in high frequency data , 2009, 0908.3095.

[229]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[230]  Mário A. T. Figueiredo Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[231]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[232]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[233]  Dani Gamerman,et al.  Sampling from the posterior distribution in generalized linear mixed models , 1997, Stat. Comput..

[234]  Edward I. George,et al.  The Practical Implementation of Bayesian Model Selection , 2001 .

[235]  D. Wilkinson,et al.  Towards an e-biology of ageing: integrating theory and data , 2003, Nature Reviews Molecular Cell Biology.

[236]  J. Pitman,et al.  Size-biased sampling of Poisson point processes and excursions , 1992 .

[237]  Emmanuel Lesaffre,et al.  Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution , 2008, Comput. Stat. Data Anal..

[238]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[239]  L. Gleser Measurement, Regression, and Calibration , 1996 .

[240]  C. Robert,et al.  A Mixture Approach to Bayesian Goodness of Fit , 2002 .

[241]  Lancelot F. James,et al.  Generalized weighted Chinese restaurant processes for species sampling mixture models , 2003 .

[242]  James G. Scott Flexible Learning on the Sphere Via Adaptive Needlet Shrinkage and Selection , 2009 .

[243]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[244]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[245]  James O. Berger,et al.  Estimating a Product of Means: Bayesian Analysis with Reference Priors , 1989 .

[246]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[247]  Qiong Wang,et al.  ROBUST TIME SERIES ANALYSIS VIA MEASUREMENT ERROR MODELING , 2009 .

[248]  A. Doucet,et al.  A note on auxiliary particle filters , 2008 .

[249]  James G. Scott,et al.  On the half-cauchy prior for a global scale parameter , 2011, 1104.4937.

[250]  P. Green,et al.  Decomposable graphical Gaussian model determination , 1999 .

[251]  Peter E. Rossi,et al.  Bayes factors for nonlinear hypotheses and likelihood distributions , 1992 .

[252]  A. Dawid Some matrix-variate distribution theory: Notational considerations and a Bayesian application , 1981 .

[253]  L. R. Haff,et al.  The superharmonic condition for simultaneous estimation of means in exponential familles , 1986 .

[254]  Sander Greenland,et al.  Multiple‐bias modelling for analysis of observational data , 2005 .

[255]  J. Bernardo Reference Posterior Distributions for Bayesian Inference , 1979 .

[256]  J. Pitman Some developments of the Blackwell-MacQueen urn scheme , 1996 .

[257]  Thomas S. Shively,et al.  A Bayesian approach to model selection in stochastic coefficient regression models and structural time series models , 1997 .

[258]  Michael Goldstein,et al.  Subjective Bayesian Analysis: Principles and Practice , 2006 .

[259]  José M. Bernardo,et al.  Comparing normal means: new methods for an old problem , 2007 .

[260]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[261]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[262]  Andre F. Perold,et al.  The Capital Asset Pricing Model , 2004 .

[263]  Marco Grzegorczyk,et al.  Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move , 2008, Machine Learning.

[264]  Michael E. Tipping Sparse Bayesian Learning and the Relevance Vector Machine , 2001, J. Mach. Learn. Res..

[265]  P. Müller,et al.  Defining Predictive Probability Functions for Species Sampling Models. , 2013, Statistical science : a review journal of the Institute of Mathematical Statistics.

[266]  Stefano A Pileri,et al.  Potential pathogenetic implications of cyclooxygenase-2 overexpression in B chronic lymphoid leukemia cells. , 2005, The American journal of pathology.

[267]  L. Wasserman,et al.  The Selection of Prior Distributions by Formal Rules , 1996 .

[268]  J. Bernardo Nested Hypothesis Testing: The Bayesian Reference Criterion , 2001 .

[269]  Robert B. Gramacy,et al.  Shrinkage regression for multivariate inference with missing data, and an application to portfolio balancing , 2009, 0907.2135.

[270]  P. Fearnhead Markov chain Monte Carlo, Sufficient Statistics, and Particle Filters , 2002 .

[271]  A. O'Hagan,et al.  Bayesian inference for non‐stationary spatial covariance structure via spatial deformations , 2003 .

[272]  D. Landau,et al.  Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[273]  V. Johnson,et al.  On the use of non‐local prior densities in Bayesian hypothesis tests , 2010 .

[274]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[275]  Darren J. Wilkinson,et al.  Bayesian Emulation and Calibration of a Stochastic Computer Model of Mitochondrial DNA Deletions in Substantia Nigra Neurons , 2009 .

[276]  Stefan Lang,et al.  Simultaneous selection of variables and smoothing parameters in structured additive regression models , 2008, Comput. Stat. Data Anal..

[277]  Nozer D. Singpurwalla,et al.  Reliability and risk , 2006 .

[278]  O. Cappé,et al.  Sequential Monte Carlo smoothing with application to parameter estimation in nonlinear state space models , 2006, math/0609514.

[279]  V. A. Uthoff,et al.  The Most Powerful Scale and Location Invariant Test of the Normal Versus the Double Exponential , 1973 .

[280]  James M. Robins,et al.  Analysis of the Binary Instrumental Variable Model , 2010 .

[281]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[282]  T. Kurtz The Relationship between Stochastic and Deterministic Models for Chemical Reactions , 1972 .

[283]  H. Jeffreys,et al.  The Theory of Probability , 1896 .

[284]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[285]  A. Raftery Approximate Bayes factors and accounting for model uncertainty in generalised linear models , 1996 .

[286]  James G. Scott,et al.  Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem , 2010, 1011.2333.

[287]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[288]  G. C. Tiao,et al.  BAYESIAN ANALYSIS OF RANDOM-EFFECT MODELS IN THE ANALYSIS OF VARIANCE. I. POSTERIOR DISTRIBUTION OF VARIANCE-COMPONENTS. , 1965 .

[289]  Ľuboš Pástor Portfolio Selection and Asset Pricing Models , 1999 .

[290]  Marco Grzegorczyk,et al.  Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler , 2008, Bioinform..

[291]  P. Druilhet,et al.  Invariant HPD credible sets and MAP estimators , 2007 .

[292]  Arnaud Doucet,et al.  Sparse Bayesian nonparametric regression , 2008, ICML '08.

[293]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[294]  Caroline C. Friedel,et al.  FERN – a Java framework for stochastic simulation and evaluation of reaction networks , 2008, BMC Bioinformatics.

[295]  Miguel Ángel Juárez Hermosillo Métodos bayesianos objetivos de estimación y contraste de hipótesis , 2004 .

[296]  Lennart Bondesson,et al.  Generalized Gamma convolutions and complete monotonicity , 1990 .

[297]  M. Vannucci,et al.  Bayesian Variable Selection in Clustering High-Dimensional Data , 2005 .

[298]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[299]  Mahlet G. Tadesse,et al.  A Stochastic Partitioning Method to Associate High-dimensional Responses and Covariates , 2009 .

[300]  Jeffrey S. Rosenthal,et al.  Coupling and Ergodicity of Adaptive MCMC , 2007 .

[301]  J. Berger,et al.  Testing a Point Null Hypothesis: The Irreconcilability of P Values and Evidence , 1987 .

[302]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[303]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[304]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[305]  George Casella,et al.  Assessing Robustness of Intrinsic Tests of Independence in Two-Way Contingency Tables , 2009 .

[306]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[307]  Marina Vannucci,et al.  Bioinformatics Original Paper Bayesian Variable Selection for the Analysis of Microarray Data with Censored Outcomes , 2022 .

[308]  J. Berger,et al.  The Intrinsic Bayes Factor for Model Selection and Prediction , 1996 .

[309]  James O. Berger,et al.  Reference Priors in a Variance Components Problem , 1992 .

[310]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .