Nichtlineare modellprädiktive Regelung eines Abwärmerückgewinnungssystems für LKW-Dieselmotoren

Zusammenfassung Dieser Beitrag beschreibt die modellprädiktive Regelung (MPC) eines Abwärmerückgewinnungssystems für LKW-Dieselmotoren, welches auf dem Organic Rankine Cycle (ORC) basiert. Zahlreiche Publikationen behandelten bisher die Regelung des Hochdruckteils von ORC-Systemen. Allerdings erfordert der optimale Betrieb des betrachteten Systems auch eine genaue Regelung des Niederdruckteils. Der Fokus dieser Arbeit liegt daher auf der Erweiterung einer bereits vorgestellten MPC des Hochdruckteils um die optimale Regelung des Niederdruckteils. Die Referenzgrößen für den optimalen Systembetrieb werden aus den Ergebnissen einer stationären Optimierung abgeleitet. Der Test des präsentierten Regelungskonzepts an einem mit Messungen validierten Simulationsmodell zeigt eine ausgezeichnete Folgeregelung der optimalen Referenzgrößen unter Einhaltung der Systembeschränkungen.

[1]  Madiha Nadri,et al.  Transient performance evaluation of waste heat recovery rankine cycle based system for heavy duty trucks , 2016 .

[2]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[3]  Ottmar Gehring,et al.  Model-based control of exhaust heat recovery in a heavy-duty vehicle , 2018 .

[4]  Andreas Kugi,et al.  Accurate low-order dynamic model of a compact plate heat exchanger , 2013 .

[5]  Paolino Tona,et al.  Control of Organic Rankine Cycle Systems on board Heavy-Duty Vehicles: a Survey , 2015 .

[6]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[7]  Ottmar Gehring,et al.  Design of a Nonlinear, Dynamic Feedforward Part for the Evaporator Control of an Organic Rankine Cycle in Heavy Duty Vehicles , 2016 .

[8]  Mattia De Rosa,et al.  Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery , 2015 .

[9]  Andreas Kugi,et al.  Modeling and optimal steady-state operating points of an ORC waste heat recovery system for diesel engines , 2017 .

[10]  Robin De Keyser,et al.  Design and experimental validation of an adaptive control law to maximize the power generation of a small-scale waste heat recovery system , 2017 .

[11]  Junqiang Zhou,et al.  Nonlinear Model Predictive Control of an Organic Rankine Cycle for Exhaust Waste Heat Recovery in Automotive Engines , 2015 .

[12]  Arnaud Legros,et al.  Comparison and Impact of Waste Heat Recovery Technologies on Passenger Car Fuel Consumption in a Normalized Driving Cycle , 2014 .

[13]  David Luong,et al.  Linear Quadratic Integral control of an Organic Rankine Cycle for waste heat recovery in heavy-duty diesel powertrain , 2014, 2014 American Control Conference.

[14]  A. Sciarretta,et al.  Towards model-based control of a steam Rankine process for engine waste heat recovery , 2012, 2012 IEEE Vehicle Power and Propulsion Conference.

[15]  Jian Song,et al.  Performance analysis of a dual-loop organic Rankine cycle (ORC) system with wet steam expansion for engine waste heat recovery , 2015 .

[16]  Tilmann Abbe Horst,et al.  Dynamic heat exchanger model for performance prediction and control system design of automotive waste heat recovery systems , 2013 .

[17]  David Luong Modeling, Estimation, and Control of Waste Heat Recovery Systems , 2013 .

[18]  Frank Willems,et al.  Control of a Waste Heat Recovery system with decoupled expander for improved diesel engine efficiency , 2015, 2015 European Control Conference (ECC).

[19]  Tor Arne Johansen,et al.  Design and analysis of gain-scheduled control using local controller networks , 1997 .

[20]  Antonio Sciarretta,et al.  Organic Rankine Cycle for Vehicles: Control Design and Experimental Results , 2017, IEEE Transactions on Control Systems Technology.

[21]  Ulli Drescher,et al.  Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants , 2007 .

[22]  M Maarten Steinbuch,et al.  Modeling and Control of a Parallel Waste Heat Recovery System for Euro-VI Heavy-Duty Diesel Engines , 2014 .