The abundance of satellites around Milky Way- and M31-like galaxies with the TNG50 simulation: a matter of diversity

We study the abundance of satellite galaxies around 198 Milky Way- (MW) and M31-like hosts in TNG50, the final installment in the IllustrisTNG suite of cosmological magnetohydrodynamical simulations. MW/M31-like analogues are defined as discy galaxies with stellar masses of $M_* = 10^{10.5 - 11.2}~\rm {M}_\odot$ in relative isolation at z = 0. By defining satellites as galaxies with $M_* \ge 5\times 10^{6}~\rm {M}_\odot$ within $300~\rm {kpc}$ (3D) of their host, we find a remarkable level of diversity and host-to-host scatter across individual host galaxies. The median TNG50 MW/M31-like galaxy hosts a total of $5^{+6}_{-3}$ satellites with $M_* \ge 8 \times 10^6~\rm {M}_\odot$, reaching up to $M_* \sim 10^{8.5^{+0.9}_{-1.1}}~\rm {M}_\odot$. Even at a fixed host halo mass of $10^{12}~\rm {M}_\odot$, the total number of satellites ranges between 0 and 11. The abundance of subhaloes with $M_\rm {dyn} \ge 5 \times 10^7~\rm {M}_\odot$ is larger by a factor of more than 10. The number of all satellites (subhaloes) ever accreted is larger by a factor of 4–5 (3–5) than those surviving to z = 0. Hosts with larger galaxy stellar mass, brighter K-band luminosity, more recent halo assembly, and – most significantly – larger total halo mass typically have a larger number of surviving satellites. The satellite abundances around TNG50 MW/M31-like galaxies are consistent with those of mass-matched hosts from observational surveys (e.g. SAGA) and previous simulations (e.g. Latte). While the observed MW satellite system falls within the TNG50 scatter across all stellar masses considered, M31 is slightly more satellite-rich than our 1σ scatter but well consistent with the high-mass end of the TNG50 sample. We find a handful of systems with both a Large and a Small Magellanic Cloud-like satellite. There is no missing satellites problem according to TNG50.

[1]  V. Belokurov,et al.  Can cosmological simulations capture the diverse satellite populations of observed Milky Way analogues? , 2020, Monthly Notices of the Royal Astronomical Society.

[2]  M. Bershady,et al.  Are the Milky Way and Andromeda unusual? A comparison with Milky Way and Andromeda analogues , 2020, 2009.02576.

[3]  B. Weiner,et al.  The SAGA Survey. II. Building a Statistical Sample of Satellite Systems around Milky Way–like Galaxies , 2020, 2008.12783.

[4]  T. Quinn,et al.  Ultrafaint Dwarfs in a Milky Way Context: Introducing the Mint Condition DC Justice League Simulations , 2020, 2008.11207.

[5]  R. Beaton,et al.  Luminosity Functions and Host-to-host Scatter of Dwarf Satellite Systems in the Local Volume , 2020, The Astrophysical Journal.

[6]  C. Frenk,et al.  The detailed structure and the onset of galaxy formation in low-mass gaseous dark matter haloes , 2020, 2004.06124.

[7]  C. Frenk,et al.  A tale of two populations: surviving and destroyed dwarf galaxies and the build-up of the Milky Way’s stellar halo , 2020, Monthly Notices of the Royal Astronomical Society.

[8]  E. Grebel,et al.  The distinct stellar-to-halo mass relations of satellite and central galaxies: insights from the IllustrisTNG simulations , 2020, Monthly Notices of the Royal Astronomical Society.

[9]  J. Frieman,et al.  Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1 , 2019, The Astrophysical Journal.

[10]  P. Salucci,et al.  Galaxy sizes and the galaxy–halo connection – I. The remarkable tightness of the size distributions , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  R. Ibata,et al.  The dwarf galaxy satellite system of Centaurus A , 2019, Astronomy & Astrophysics.

[12]  D. Sand,et al.  The M101 Satellite Luminosity Function and the Halo–Halo Scatter among Local Volume Hosts , 2019, The Astrophysical Journal.

[13]  P. Barmby,et al.  Dust properties and star formation of approximately a thousand local galaxies , 2019, Astronomy & Astrophysics.

[14]  Cambridge,et al.  Evidence for two early accretion events that built the Milky Way stellar halo , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  V. Springel,et al.  First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[16]  V. Springel,et al.  First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  R. Beaton,et al.  Using Surface Brightness Fluctuations to Study nearby Satellite Galaxy Systems: The Complete Satellite System of M101 , 2019, The Astrophysical Journal.

[18]  Annalisa Pillepich,et al.  The IllustrisTNG simulations: public data release , 2018, Computational Astrophysics and Cosmology.

[19]  M. Boylan-Kolchin,et al.  Phat ELVIS: The inevitable effect of the Milky Way’s disc on its dark matter subhaloes , 2018, Monthly Notices of the Royal Astronomical Society.

[20]  J. Wadsley,et al.  The trajectories of galaxies in groups: mass-loss and preprocessing , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  Sergey E. Koposov,et al.  The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[22]  M. Irwin,et al.  The Large-scale Structure of the Halo of the Andromeda Galaxy. II. Hierarchical Structure in the Pan-Andromeda Archaeological Survey , 2018, The Astrophysical Journal.

[23]  L. Hernquist,et al.  Shape of dark matter haloes in the Illustris simulation: effects of baryons , 2018, Monthly Notices of the Royal Astronomical Society.

[24]  Tucson,et al.  The Faint End of the Centaurus A Satellite Luminosity Function , 2018, The Astrophysical Journal.

[25]  C. Frenk,et al.  The mass of the Milky Way from satellite dynamics , 2018, Monthly Notices of the Royal Astronomical Society.

[26]  J. Bailin,et al.  A Lonely Giant: The Sparse Satellite Population of M94 Challenges Galaxy Formation , 2018, The Astrophysical Journal.

[27]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[28]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[29]  P. Hopkins,et al.  The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  A. Dutton,et al.  NIHAO XV: the environmental impact of the host galaxy on galactic satellite and field dwarf galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  C. Frenk,et al.  Evolution of LMC/M33-mass dwarf galaxies in the eagle simulation , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  V. Springel,et al.  The fraction of dark matter within galaxies from the IllustrisTNG simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  Sergey E. Koposov,et al.  Discovery of two neighbouring satellites in the Carina constellation with MagLiteS , 2018, 1801.07279.

[34]  F. V. D. Bosch,et al.  Dark Matter Substructure in Numerical Simulations: A Tale of Discreteness Noise, Runaway Instabilities, and Artificial Disruption , 2018, 1801.05427.

[35]  Cambridge,et al.  Halo substructure in the SDSS--Gaia catalogue: streams and clumps , 2017, 1712.04071.

[36]  D. Sand,et al.  Discovery of Diffuse Dwarf Galaxy Candidates around M101 , 2017, 1710.01728.

[37]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[38]  V. Springel,et al.  First results from the IllustrisTNG simulations: radio haloes and magnetic fields , 2017, Monthly Notices of the Royal Astronomical Society.

[39]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[40]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[41]  E. Ramirez-Ruiz,et al.  First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium , 2017, 1707.03401.

[42]  Carnegie,et al.  The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs , 2017, 1705.06743.

[43]  V. Springel,et al.  Quenching and ram pressure stripping of simulated Milky Way satellite galaxies , 2017, 1705.03018.

[44]  S. Faber,et al.  Constraining the galaxy–halo connection over the last 13.3 Gyr: star formation histories, galaxy mergers and structural properties , 2017, 1703.04542.

[45]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[46]  L. Hernquist,et al.  Subhalo demographics in the Illustris simulation: effects of baryons and halo-to-halo variation , 2016, 1611.07991.

[47]  Federico Marinacci,et al.  The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time , 2016, 1610.01159.

[48]  M. Irwin,et al.  THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. II. DETAILED PROPERTIES OF 23 M31 DWARF SPHEROIDAL GALAXIES , 2016, 1610.01158.

[49]  V. Springel,et al.  The role of mergers and halo spin in shaping galaxy morphology , 2016, 1609.09498.

[50]  G. Besla,et al.  Orbits of massive satellite galaxies – I. A close look at the Large Magellanic Cloud and a new orbital history for M33 , 2016, 1609.04823.

[51]  V. Springel,et al.  Simulating galaxy formation with black hole driven thermal and kinetic feedback , 2016, 1607.03486.

[52]  H. Jerjen,et al.  New low surface brightness dwarf galaxies in the Centaurus group , 2016, 1605.04130.

[53]  M. Boylan-Kolchin,et al.  Organized Chaos: Scatter in the relation between stellar mass and halo mass in small galaxies , 2016, 1603.04855.

[54]  P. Hopkins,et al.  RECONCILING DWARF GALAXIES WITH ΛCDM COSMOLOGY: SIMULATING A REALISTIC POPULATION OF SATELLITES AROUND A MILKY WAY–MASS GALAXY , 2016, 1602.05957.

[55]  Astrophysics,et al.  COLD DARK MATTER SUBSTRUCTURES IN EARLY-TYPE GALAXY HALOS , 2016, 1602.03526.

[56]  Sergey E. Koposov,et al.  The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater , 2016, 1601.07178.

[57]  B. Yanny,et al.  EIGHT ULTRA-FAINT GALAXY CANDIDATES DISCOVERED IN YEAR TWO OF THE DARK ENERGY SURVEY , 2015, 1508.03622.

[58]  J. Brinchmann,et al.  UNVEILING THE MILKY WAY: A NEW TECHNIQUE FOR DETERMINING THE OPTICAL COLOR AND LUMINOSITY OF OUR GALAXY , 2015, 1508.04446.

[59]  C. Frenk,et al.  The APOSTLE project: Local Group kinematic mass constraints and simulation candidate selection , 2015, 1507.03643.

[60]  V. Springel,et al.  Baryonic impact on the dark matter distribution in Milky Way-sized galaxies and their satellites , 2015, 1506.05537.

[61]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[62]  R. Wechsler,et al.  THE DEPENDENCE OF SUBHALO ABUNDANCE ON HALO CONCENTRATION , 2015, 1503.02637.

[63]  Sergey E. Koposov,et al.  BEASTS OF THE SOUTHERN WILD: DISCOVERY OF NINE ULTRA FAINT SATELLITES IN THE VICINITY OF THE MAGELLANIC CLOUDS , 2015, 1503.02079.

[64]  Annalisa Pillepich,et al.  The merger rate of galaxies in the Illustris simulation: a comparison with observations and semi-empirical models , 2015, 1502.01339.

[65]  V. Springel,et al.  The stability of stellar discs in Milky Way-sized dark matter haloes , 2014, 1411.3729.

[66]  B. McLeod,et al.  DISCOVERY OF A CLOSE PAIR OF FAINT DWARF GALAXIES IN THE HALO OF CENTAURUS A , 2014, 1409.4776.

[67]  Durham,et al.  Milky Way mass constraints from the Galactic satellite gap , 2014, 1405.7697.

[68]  Liverpool John Moores University,et al.  Bent by baryons: the low-mass galaxy-halo relation , 2014, 1404.3724.

[69]  F. V. D. Bosch,et al.  Statistics of dark matter substructure – I. Model and universal fitting functions , 2014, 1403.6827.

[70]  M. Irwin,et al.  THE LARGE-SCALE STRUCTURE OF THE HALO OF THE ANDROMEDA GALAXY. I. GLOBAL STELLAR DENSITY, MORPHOLOGY AND METALLICITY PROPERTIES , 2013, 1311.5888.

[71]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[72]  M. Boylan-Kolchin,et al.  ELVIS: Exploring the Local Volume in Simulations , 2013, 1310.6746.

[73]  P. Madau,et al.  THE BARYON CYCLE OF DWARF GALAXIES: DARK, BURSTY, GAS-RICH POLLUTERS , 2013, 1308.4131.

[74]  Alan W. McConnachie,et al.  THE PAndAS VIEW OF THE ANDROMEDA SATELLITE SYSTEM. I. A BAYESIAN SEARCH FOR DWARF GALAXIES USING SPATIAL AND COLOR–MAGNITUDE INFORMATION , 2013, 1307.7626.

[75]  V. Springel,et al.  The formation of disc galaxies in high-resolution moving-mesh cosmological simulations , 2013, 1305.5360.

[76]  V. Springel,et al.  A model for cosmological simulations of galaxy formation physics: multi-epoch validation , 2013, 1305.4931.

[77]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[78]  A. Kravtsov,et al.  SATELLITES IN MILKY-WAY-LIKE HOSTS: ENVIRONMENT DEPENDENCE AND CLOSE PAIRS , 2013, 1301.2605.

[79]  V. Springel,et al.  Simulations of magnetic fields in isolated disc galaxies , 2012, 1212.1452.

[80]  S. White,et al.  Satellites and haloes of dwarf galaxies , 2012, 1208.2027.

[81]  A. Helmi,et al.  The satellites of the Milky Way – insights from semi-analytic modelling in a ΛCDM cosmology , 2012, 1206.0020.

[82]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[83]  J. Bailin,et al.  Mechanisms of baryon loss for dark satellites in cosmological smoothed particle hydrodynamics simulations , 2011, 1103.3285.

[84]  E. Tollerud,et al.  SMALL-SCALE STRUCTURE IN THE SLOAN DIGITAL SKY SURVEY AND ΛCDM: ISOLATED ∼L* GALAXIES WITH BRIGHT SATELLITES , 2011, 1103.1875.

[85]  A. Helmi,et al.  The population of Milky Way satellites in the LambdaCDM cosmology , 2011, 1103.0024.

[86]  R. Wechsler,et al.  HOW COMMON ARE THE MAGELLANIC CLOUDS? , 2010, 1011.2255.

[87]  L. Hernquist,et al.  Dynamics of the Magellanic Clouds in a LCDM Universe , 2010, 1010.4797.

[88]  S. White,et al.  The statistics of the subhalo abundance of dark matter haloes , 2010, 1006.2882.

[89]  G. Kauffmann,et al.  Erratum: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology , 2010, 1006.0106.

[90]  S. Kay,et al.  Impact of baryon physics on dark matter structures: a detailed simulation study of halo density profiles , 2010, 1001.3447.

[91]  S. White,et al.  There's no place like home? Statistics of Milky Way-mass dark matter haloes , 2009, 0911.4484.

[92]  B. Willman In Pursuit of the Least Luminous Galaxies , 2009, 0907.4758.

[93]  V. Springel,et al.  SUBSTRUCTURE DEPLETION IN THE MILKY WAY HALO BY THE DISK , 2009, 0907.3482.

[94]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[95]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[96]  V. Springel,et al.  Substructures in hydrodynamical cluster simulations , 2008, 0808.3401.

[97]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[98]  M. Steinmetz,et al.  Satellites of simulated galaxies: survival, merging and their relationto the dark and stellar haloes , 2007, 0704.1770.

[99]  J. Bullock,et al.  Shredded Galaxies as the Source of Diffuse Intrahalo Light on Varying Scales , 2007, astro-ph/0703004.

[100]  M. Lehnert,et al.  The Milky Way: An Exceptionally Quiet Galaxy; Implications for the formation of spiral galaxies , 2007, astro-ph/0702585.

[101]  T. Sakamoto,et al.  Discovery of a Faint Old Stellar System at 150 kpc , 2006, astro-ph/0610858.

[102]  B. Moore,et al.  Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment , 2006, astro-ph/0608157.

[103]  Subaru Telescope,et al.  A Curious Milky Way Satellite in Ursa Major , 2006, astro-ph/0606633.

[104]  B. Yanny,et al.  A Faint New Milky Way Satellite in Bootes , 2006, astro-ph/0604355.

[105]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[106]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[107]  C. Frenk,et al.  Effects of feedback on the morphology of galaxy discs , 2005, astro-ph/0503676.

[108]  S. White,et al.  The subhalo populations of ΛCDM dark haloes , 2004, astro-ph/0404589.

[109]  U. Washington,et al.  The inner structure of ΛCDM haloes – III. Universality and asymptotic slopes , 2003, astro-ph/0311231.

[110]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[111]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[112]  Rachel S. Somerville,et al.  Can Photoionization Squelching Resolve the Substructure Crisis? , 2001, astro-ph/0107507.

[113]  P. Madau,et al.  EARLY METAL ENRICHMENT BY PREGALACTIC OUTFLOWS : II . SIMULATIONS OF BLOW – AWAY , 2001 .

[114]  D. Spergel,et al.  Three-dimensional Structure of the Milky Way Disk: The Distribution of Stars and Dust beyond 0.35 R☉ , 2001, astro-ph/0101259.

[115]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[116]  D. Weinberg,et al.  Reionization and the Abundance of Galactic Satellites , 2000, astro-ph/0002214.

[117]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[118]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[119]  D. Weinberg,et al.  Hydrodynamic Simulations of Galaxy Formation. II. Photoionization and the Formation of Low Mass Galaxies , 1995, astro-ph/9510154.

[120]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[121]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[122]  M. Rees,et al.  Pregalactic evolution in cosmologies with cold dark matter , 1986 .

[123]  J. Silk,et al.  Dwarf galaxies, cold dark matter, and biased galaxy formation , 1986 .

[124]  R. Larson Effects of Supernovae on the Early Evolution of Galaxies , 1974 .