Image processing based object tracking application with fractional-order model reference controller

Bu çalışmada doğru akım servo motorun pozisyon denetimi, kesir dereceli integratörle birlikte geleneksel model referans uyarlamalı denetleyici yapısı kullanılarak incelenmiştir. Denetleyici yapısındaki iyileşme, uyarlama kuralında kesir dereceli operatörlerin kullanılmasıyla sağlanmıştır. Gerçek zamanlı çalışan sistemin referans pozisyon bilgisi, kameradan alınan değerlere göre güncellenmiştir. Sistem çıkışı, öğrenme katsayısı değiştirilerek tamsayı ve kesir dereceli uyarlama kuralına göre karşılaştırmalı olarak kıyaslanmıştır. Elde edilen sonuçlara göre kesir dereceli yaklaşımın daha iyi sonuç verdiği gözlenmiştir. In this paper, position control application of DC servo motor is investigated by using conventional model reference adaptive control structure with fractional order integrator. Modification of the controller is achieved by fractional order integrator in adaptation rule. Object position for reference input of control system is updated in real time by the values obtained from camera of object tracking system. Results obtained for integer order integrator and fractionalorder integrator for model reference adaptive control system are compared and it is observed that the fractional-order integrator can provide faster adaptation for the system.

[1]  Yoichi Hori,et al.  A New Model Reference Adaptive Controller for Four Quadrant Vector Controlled Induction Motor Drives , 2012, IEEE Transactions on Industrial Electronics.

[2]  Chang-Chieh Hang,et al.  Comparative studies of model reference adaptive control systems , 1973 .

[3]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[4]  Naresh K. Sinha,et al.  Modeling of DC Motors for Control Applications , 1974, IEEE Transactions on Industrial Electronics and Control Instrumentation.

[5]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[6]  Yongming Li,et al.  Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping ☆ , 2013 .

[7]  Ravi Kumar Jatoth,et al.  Design of intelligent PID/PIλDμ speed controller for chopper fed DC motor drive using opposition based artificial bee colony algorithm , 2014, Eng. Appl. Artif. Intell..

[8]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[9]  Dewei Li,et al.  Model predictive controller design and implementation on FPGA with application to motor servo system , 2012 .

[10]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[11]  Massimo Canale,et al.  A Lego Mindstorms NXT experiment for Model Predictive Control education , 2013, 2013 European Control Conference (ECC).

[12]  T. K. Radhakrishnan,et al.  Real-coded Genetic Algorithm for system identification and tuning of a modified Model Reference Adaptive Controller for a hybrid tank system , 2013 .

[13]  Josep M. Olm,et al.  Model reference adaptive control of discrete‐time piecewise linear systems , 2013 .

[14]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[15]  Qing Wang,et al.  Model reference adaptive switching control of a linearized hypersonic flight vehicle model with actuator saturation , 2010 .

[16]  R.V. Monopoli,et al.  Adaptive control: The model reference approach , 1981, Proceedings of the IEEE.

[17]  Yufei Xu,et al.  Adaptive Fault-Tolerant Tracking Control of Near-Space Vehicle Using Takagi–Sugeno Fuzzy Models , 2010, IEEE Transactions on Fuzzy Systems.

[18]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .

[19]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .