Fiber/Metal composite technology for future primary aircraft structures

This paper discusses the structural and material considerations for fiber/metal composite technology for future primary and secondary aircraft structures. Based on these considerations and the experience obtained so far with fiber/metal laminates in primary aircraft structures, the potential field of further development of fiber/metal composite technology will be explained. It is concluded that a composite technology approach, in which both metals and fibers are combined to form a tailored structural material, can lead to significant weight reduction in future structural applications.

[1]  Yan-Yee Andy Ko,et al.  The Multidisciplinary Design Optimization of a Distributed Propulsion Blended-Wing-Body Aircraft , 2003 .

[2]  I. Partridge,et al.  3D reinforcement of stiffener-to-skin T-joints by Z-pinning and tufting , 2006 .

[3]  T. J. De Vries,et al.  Blunt and sharp notch behaviour of Glare laminates , 2001 .

[4]  Jan Willem Gunnink,et al.  Fibre metal laminates : an introduction , 2001 .

[5]  J. Homan,et al.  Fatigue initiation in fibre metal laminates , 2006 .

[6]  G.H.J.J. Roebroeks,et al.  The development of a fatigue insensitive and damage tolerant aircraft material , 1991 .

[7]  Bryan Harris,et al.  Fatigue in composites , 2003 .

[8]  Walter Schütz,et al.  A history of fatigue , 1996 .

[9]  Jack W. Langelaan,et al.  Damage tolerance modelling of fibre/metal laminate fuselage structures , 1997 .

[10]  R. H. Liebeck,et al.  Design of the Blended Wing Body Subsonic Transport , 2002 .

[11]  A. Mouritz Compression properties of z-pinned sandwich composites , 2006 .

[12]  I. Partridge,et al.  Delamination of Z-pinned carbon fibre reinforced laminates , 2006 .

[13]  J. E. Land HUMS-the benefits-past, present and future , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[14]  S. T. Peters Ten common mistakes in composite design and manufacture and how to avoid them , 2006 .

[15]  Robert E. Melchers,et al.  Durability of Glass Polymer Composites Subject to Stress Corrosion , 2003 .

[16]  A. Mouritz,et al.  Properties and failure mechanisms of pinned composite lap joints in monotonic and cyclic tension , 2006 .

[17]  E. C. Yates,et al.  Design study of structural concepts for an arrow-wing supersonic-cruise aircraft , 1976 .

[18]  A. Vlot,et al.  Development of fibre metal laminates for advanced aerospace structures , 2000 .

[19]  R. Marissen,et al.  Fatigue crack growth in ARALL. A hybrid aluminium-aramid composite material: Crack growth mechanisms and quantitative predictions of the crack growth rates , 1988 .

[20]  M. Hagenbeek,et al.  Static Properties of Fibre Metal Laminates , 2003 .

[21]  I. Partridge,et al.  Delamination resistant laminates by Z-Fiber® pinning: Part I manufacture and fracture performance , 2005 .

[22]  H. Azzam,et al.  Smith Industries HUMS: changing the M from monitoring to management , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[23]  René Alderliesten,et al.  Fatigue Crack Propagation and Delamination Growth in Glare , 2007 .

[24]  A. Vlot,et al.  Glare: History of the Development of a New Aircraft Material , 2001 .

[25]  F. R. Jones 4 – The effects of aggressive environments on long-term behaviour , 2003 .

[26]  Jan Willem Gunnink,et al.  Fibre Metal Laminates , 2001 .

[27]  A. Vlot,et al.  Impact loading on fibre metal laminates , 1996 .

[28]  R. M. Mayer,et al.  Design Data for Reinforced Plastics: A guide for engineers and designers , 1993 .

[29]  René Alderliesten,et al.  Fatigue and damage tolerance issues of GLARE in aircraft structures , 2006 .

[30]  Z. Zhou,et al.  Health monitoring of aircraft fuselage structures using ultrasonic waves , 2006 .

[31]  Y. Mai,et al.  Mode II delamination toughness of Z-pinned laminates , 2004 .