High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology

[1]  R. C. Bansal,et al.  Carbon black : science and technology , 2018 .

[2]  Alan Windle,et al.  Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness , 2016, Journal of Materials Science.

[3]  Michel B. Johnson,et al.  Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy‐impregnated composites , 2016 .

[4]  Peng Liu,et al.  Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation. , 2016, ACS applied materials & interfaces.

[5]  Wu-Xing Zhou,et al.  Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by inter-wall van der Waals interactions , 2016 .

[6]  V. Shanov,et al.  Influence of annealing on thermal and electrical properties of carbon nanotube yarns , 2016 .

[7]  A. Pantano,et al.  Mechanical properties of carbon nanotube fibres: St Venant’s principle at the limit and the role of imperfections , 2015 .

[8]  A. Windle,et al.  Spinning of carbon nanotube fibres using the floating catalyst high temperature route: purity issues and the critical role of sulphur. , 2014, Faraday discussions.

[9]  F. G. Emmerich Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers , 2014 .

[10]  S. Mall,et al.  Investigation into microstructure of carbon nanotube multi-yarn , 2014 .

[11]  Agnieszka Lekawa-Raus,et al.  Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring , 2014 .

[12]  J. Vilatela,et al.  Controlling Carbon Nanotube Type in Macroscopic Fibers Synthesized by the Direct Spinning Process , 2014 .

[13]  V. Prakash,et al.  Thermal conductivity of high performance carbon nanotube yarn-like fibers , 2014 .

[14]  F. Yuan,et al.  Stabilizing carbon nanotube yarns using chemical vapor infiltration , 2014 .

[15]  J. Elliott,et al.  Liquid infiltration into carbon nanotube fibers: effect on structure and electrical properties. , 2013, ACS nano.

[16]  Kenneth E. Goodson,et al.  Thermal conduction phenomena in carbon nanotubes and related nanostructured materials , 2013 .

[17]  Boris I. Yakobson,et al.  Can carbon nanotube fibers achieve the ultimate conductivity?—Coupled-mode analysis for electron transport through the carbon nanotube contact , 2013 .

[18]  W. Huh,et al.  Controlling the crystalline quality of carbon nanotubes with processing parameters from chemical vapor deposition synthesis , 2013 .

[19]  Y. Cohen,et al.  Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity , 2013, Science.

[20]  E. Ebrahimnia-Bajestan,et al.  A novel approach for determining thermal properties of single-walled carbon nanotubes , 2012 .

[21]  V. Shanov,et al.  Physical properties of carbon nanotube sheets drawn from nanotube arrays , 2012 .

[22]  Qingwen Li,et al.  Enhancement of carbon nanotube fibres using different solvents and polymers , 2012 .

[23]  K. Koziol,et al.  Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment. , 2011, ACS nano.

[24]  Robert Vajtai,et al.  Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals , 2011, Scientific reports.

[25]  Qiang Zhang,et al.  Carbon nanotube mass production: principles and processes. , 2011, ChemSusChem.

[26]  Saumitra Das,et al.  Interplay between NS3 protease and human La protein regulates translation-replication switch of Hepatitis C virus , 2011, Scientific reports.

[27]  J. Elliott,et al.  A model for the strength of yarn-like carbon nanotube fibers. , 2011, ACS nano.

[28]  Moran Wang,et al.  Understanding of temperature and size dependences of effective thermal conductivity of nanotubes , 2010 .

[29]  J. Davidson,et al.  Carbon nanotube reactor: Ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up , 2010 .

[30]  R. Baughman,et al.  Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes , 2010, Nanotechnology.

[31]  Changhong Liu,et al.  Highly oriented carbon nanotube papers made of aligned carbon nanotubes , 2008, Nanotechnology.

[32]  Michael Sennett,et al.  High-Performance Carbon Nanotube Fiber , 2007, Science.

[33]  Mei Zhang,et al.  Thermal transport in MWCNT sheets and yarns , 2007 .

[34]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[35]  A. Majumdar,et al.  Breakdown of Fourier's law in nanotube thermal conductors. , 2007, Physical review letters.

[36]  Alan H. Windle,et al.  The parameter space for the direct spinning of fibres and films of carbon nanotubes , 2007 .

[37]  I. Ivanov,et al.  The Effect of Annealing on the Electrical and Thermal Transport Properties of Macroscopic Bundles of Long Multi-Wall Carbon Nanotubes , 2007 .

[38]  Jennifer R. Lukes,et al.  Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling , 2006 .

[39]  Boris I. Yakobson,et al.  Persistence Length and Nanomechanics of Random Bundles of Nanotubes , 2006 .

[40]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[41]  N. Mingo,et al.  Carbon nanotube ballistic thermal conductance and its limits. , 2005, Physical review letters.

[42]  P. Poulin,et al.  Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes , 2004 .

[43]  Paul J. Sellin,et al.  Thermal and electrical transport in multi-walled carbon nanotubes , 2004 .

[44]  D. Lane,et al.  The direct determination of X-ray diffraction data from specific depths , 2004, Powder Diffraction.

[45]  Ya-Li Li,et al.  Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis , 2004, Science.

[46]  R. Smalley,et al.  Single Wall Carbon Nanotube Fibers Extruded from Super-Acid Suspensions: Preferred Orientation, Electrical and Thermal Transport , 2004 .

[47]  R. Smalley,et al.  Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties , 2003 .

[48]  Myung Jong Kim,et al.  Macroscopic, Neat, Single-Walled Carbon Nanotube Fibers , 2002, Science.

[49]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[50]  Terry M. Tritt,et al.  Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples , 2001 .

[51]  R. Smalley,et al.  Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films , 2000 .

[52]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[53]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[54]  A. Zettl,et al.  Thermal conductivity of single-walled carbon nanotubes , 1998 .

[55]  A. B. Kaiser,et al.  Heterogeneous model for conduction in carbon nanotubes , 1998 .

[56]  T. Ebbesen Physical Properties of Carbon Nanotubes , 1997 .

[57]  Wei,et al.  Thermal diffusivity of isotopically enriched 12C diamond. , 1990, Physical review. B, Condensed matter.

[58]  Heremans,et al.  Thermal conductivity and thermopower of vapor-grown graphite fibers. , 1985, Physical review. B, Condensed matter.

[59]  M. Dresselhaus,et al.  The temperature variation of the thermal conductivity of benzene-derived carbon fibers , 1984 .

[60]  R E Shepler,et al.  CARBON-FIBER COMPOSITES , 1979 .

[61]  T. Dumitricǎ,et al.  Thermal Conductivity and Phonon Scattering in Severely Bent Carbon Nanotubes and Bi-layer Graphene , 2015 .

[62]  W. G. Bowman,et al.  Young's modulus , 2014 .

[63]  V. Shanov,et al.  Thermal and electrical conductivity of array-spun multi-walled carbon nanotube yarns , 2012 .

[64]  H. Kataura,et al.  Purity and defect characterization of single-wall carbon nanotubes using Raman spectroscopy , 2011 .

[65]  Z. Zhoua,et al.  The effect of annealing on the electrical and thermal transport properties of macroscopic bundles of long multi-wall carbon nanotubes , 2006 .

[66]  Ben Wang,et al.  Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites , 2006 .

[67]  Ryutaro Fukushima CARBON FIBERS , 2002 .

[68]  C. Rao,et al.  Nanotubes and nanowires , 2001 .

[69]  P. Pimienta,et al.  Mechanical Properties , 2018, Bainite in Steels.

[70]  H. Katzman,et al.  Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel , 1998 .

[71]  Robert Rhodes Mather,et al.  Manufactured Fibre Technology , 1997 .

[72]  S. C. Saxena,et al.  Thermophysical Properties of Matter - the TPRC Data Series. Volume 11. Viscosity , 1975 .