Vertex Cover Problem Parameterized Above and Below Tight Bounds

We study the well-known Vertex Cover problem parameterized above and below tight bounds. We show that two of the parameterizations (both were suggested by Mahajan et al. in J. Comput. Syst. Sci. 75(2):137–153, 2009) are fixed-parameter tractable and two other parameterizations are W[1]-hard (one of them is, in fact, W[2]-hard).

[1]  Henning Fernau,et al.  On Parameterized Enumeration , 2002, COCOON.

[2]  Michael R. Fellows,et al.  Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments , 2004, ALENEX/ANALC.

[3]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[4]  Serge Grigorieff,et al.  Synchronization of a bounded degree graph of cellular automata with non uniform delays in time D b log , 2006 .

[5]  Faisal N. Abu-Khzam,et al.  Scalable Parallel Algorithms for FPT Problems , 2006, Algorithmica.

[6]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[7]  Meena Mahajan,et al.  Parameterizing above or below guaranteed values , 2009, J. Comput. Syst. Sci..

[8]  Rolf Niedermeier,et al.  A general method to speed up fixed-parameter-tractable algorithms , 2000, Inf. Process. Lett..

[9]  Frank Harary,et al.  Graph Theory , 2016 .

[10]  Saket Saurabh,et al.  Capacitated Domination and Covering: A Parameterized Perspective , 2008, IWPEC.

[11]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[12]  Serge Grigorieff,et al.  Synchronization of a bounded degree graph of cellular automata with nonuniform delays in time D floor(logm D) , 2006, Theor. Comput. Sci..

[13]  Gregory Gutin,et al.  Fixed-Parameter Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs , 2009, IWPEC.

[14]  Saket Saurabh,et al.  The Complexity of Finding Subgraphs Whose Matching Number Equals the Vertex Cover Number , 2007, ISAAC.

[15]  Ge Xia,et al.  Simplicity is Beauty: Improved Upper Bounds for Vertex Cover , 2005 .

[16]  Ulrike Stege,et al.  Solving large FPT problems on coarse-grained parallel machines , 2003, J. Comput. Syst. Sci..

[17]  Rolf Niedermeier,et al.  Parameterized Complexity of Vertex Cover Variants , 2007, Theory of Computing Systems.

[18]  Barry O'Sullivan,et al.  Almost 2-SAT Is Fixed-Parameter Tractable (Extended Abstract) , 2008, ICALP.

[19]  B. Reed ω, Δ, and χ , 1998 .

[20]  Venkatesh Raman,et al.  Approximation Algorithms for Some Parameterized Counting Problems , 2002, ISAAC.

[21]  Michael R. Fellows,et al.  Towards Fully Multivariate Algorithmics: Some New Results and Directions in Parameter Ecology , 2009, IWOCA.

[22]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[23]  Barry O'Sullivan,et al.  Almost 2-SAT is Fixed-Parameter Tractable , 2008, J. Comput. Syst. Sci..

[24]  Gregory Gutin,et al.  FPT Algorithms in Analysis of Heuristics for Extracting Networks in Linear Programs , 2009, ArXiv.

[25]  Peter Damaschke Parameterized enumeration, transversals, and imperfect phylogeny reconstruction , 2006, Theor. Comput. Sci..

[26]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[27]  Louis Esperet Boxicity of graphs with bounded degree , 2009, Eur. J. Comb..