Numerical Solution of Boussinesq Equations to Simulate Dam-Break Flows

To investigate the effect of nonhydrostatic pressure distribution, dam-break flows are simulated by numerically solving the one-dimensional Boussinesq equations by using a fourth-order explicit finite-difference scheme. The computed water surface profiles for different depth ratios have undulations near the bore front for depth ratios greater than 0.4. The results obtained by using the Saint Venant equations and the Boussinesq equations are compared to determine the contribution of individual Boussinesq terms in the simulation of dam-break flow. It is found that, for typical engineering applications, the Saint Venant equations give sufficiently accurate results for the maximum flow depth and the time to reach this value at a location downstream of the dam.