Photonic nanostructures for solar energy conversion

Photonic nanostructures, manipulating and confining light on the nanometer scale, provide new opportunities to improve the efficiency of solar energy conversion. Optical microcavities confine light to small volumes by resonant recirculation. Plasmonic metal nanostructures with surface plasmon resonances can act as antennas to localize optical energy and control the location of charge carrier generation. Photonic crystals can enhance the interaction of light with a semiconductor. Integrated photonic crystals and the plasmonic effects of micro-structural materials may have a superposition effect in controlling light. Some applications and practical examples with respect to improving the efficiency of solar energy conversion with photonic nanostructures have been reviewed, demonstrating how such structures can enhance light absorption and improve the generation and separation of photoexcited charge carriers in photocatalytic degradation, solar water splitting, photovoltaic devices and CO2 photoreduction. Distinct from other published reviews, we simultaneously discuss several different types of photonic nanostructures in order to show the similarities and differences of photonic structures for solar energy conversion. Furthermore, the combination of different types of photonic nanostructures for developing more efficient solar energy conversion systems is discussed and explored.

[1]  E. Liu,et al.  Photocatalytic Reduction of CO2 into Methanol over Ag/TiO2 Nanocomposites Enhanced by Surface Plasmon Resonance , 2014, Plasmonics.

[2]  M. E. Calvo,et al.  Resonant Photocurrent Generation in Dye-Sensitized Periodically Nanostructured Photoconductors by Optical Field Confinement Effects , 2013, Journal of the American Chemical Society.

[3]  F. Sordello,et al.  Improved Photochemistry of TiO2 Inverse Opals and Some Examples , 2012 .

[4]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[5]  E. Liu,et al.  Photoconversion of CO2 to methanol over plasmonic Ag/TiO2 nano-wire films enhanced by overlapped visible-light-harvesting nanostructures , 2015 .

[6]  Jinhua Ye,et al.  Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. , 2011, ACS nano.

[7]  Tzyy‐Schiuan Yang,et al.  Doubly resonant surface-enhanced Raman scattering on gold nanorod decorated inverse opal photonic crystals. , 2012, Optics express.

[8]  R. Singh,et al.  Highly enhanced photocatalytic activity of Au nanorod–CdS nanorod heterocomposites , 2013 .

[9]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[10]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[11]  Q. Xiong,et al.  Elucidating the localized plasmonic enhancement effects from a single Ag nanowire in organic solar cells. , 2014, ACS nano.

[12]  M. Fan,et al.  Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction , 2015 .

[13]  Pratim Biswas,et al.  Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. , 2012, Journal of the American Chemical Society.

[14]  J. Baumberg,et al.  Size Dependent Plasmonic Effect on BiVO4 Photoanodes for Solar Water Splitting , 2015, Scientific Reports.

[15]  Jianfeng Chen,et al.  One-step fabrication of N-doped TiO2 inverse opal films with visible light photocatalytic activity , 2013 .

[16]  Willem L. Vos,et al.  LARGE DISPERSIVE EFFECTS NEAR THE BAND EDGES OF PHOTONIC CRYSTALS , 1999 .

[17]  Jiao Xu,et al.  Novel N−F-Codoped TiO2 Inverse Opal with a Hierarchical Meso-/Macroporous Structure: Synthesis, Characterization, and Photocatalysis , 2010 .

[18]  N. Russo,et al.  Photo-catalytic activity of BiVO4 thin-film electrodes for solar-driven water splitting , 2015 .

[19]  K. Domen,et al.  Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system , 2015 .

[20]  Jiaxing Li,et al.  Correction: Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods , 2015, Journal of Materials Chemistry A.

[21]  Bernard Geffroy,et al.  Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances , 2006 .

[22]  I. Park,et al.  Strong localized surface plasmon resonance effects of Ag/TiO2 core-shell nanowire arrays in UV and visible light for photocatalytic activity. , 2014, Nanoscale.

[23]  A. Mohamed,et al.  Morphological and structural studies of titanate and titania nanostructured materials obtained after heat treatments of hydrothermally produced layered titanate , 2012 .

[24]  Jiangtian Li,et al.  Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array , 2013, Nature Communications.

[25]  J. Crittenden,et al.  Photocatalytic reduction of triclosan on Au-Cu2O nanowire arrays as plasmonic photocatalysts under visible light irradiation. , 2015, Physical chemistry chemical physics : PCCP.

[26]  Nanyan Wang,et al.  Photoreduction of CO2 into hydrocarbons catalysed by ZnGa2O4/Ga2O3 heterojunction , 2013 .

[27]  R. Brydson,et al.  Enhanced Photocatalytic Hydrogen Generation Using Polymorphic Macroporous TaON , 2012, Advanced materials.

[28]  P. Ding,et al.  Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts. , 2015, ACS applied materials & interfaces.

[29]  G. Shao,et al.  Worm-Like Ag/ZnO Core−Shell Heterostructural Composites: Fabrication, Characterization, and Photocatalysis , 2012 .

[30]  Kuei-Hsien Chen,et al.  Plasmonic Ag@Ag3(PO4)1−x nanoparticle photosensitized ZnO nanorod-array photoanodes for water oxidation , 2012 .

[31]  Ang Li,et al.  Enhanced Surface Reaction Kinetics and Charge Separation of p-n Heterojunction Co3O4/BiVO4 Photoanodes. , 2015, Journal of the American Chemical Society.

[32]  Tarek A. Kandiel,et al.  Bi(2) WO(6) inverse opals: facile fabrication and efficient visible-light-driven photocatalytic and photoelectrochemical water-splitting activity. , 2011, Small.

[33]  S. Ramakrishna,et al.  Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation , 2014 .

[34]  Shuo Chen,et al.  Integrating plasmonic nanoparticles with TiO₂ photonic crystal for enhancement of visible-light-driven photocatalysis. , 2012, Environmental science & technology.

[35]  Kazunori Sato,et al.  Facile synthesis of anatase-rutile TiO2 composites with enhanced CO2 photoreduction activity and the effect of Pt loading on product selectivity , 2016 .

[36]  G. Cheng,et al.  Direct observation of photoinduced charge redistribution of WO3–TiO2 double layer nanocomposite films by photoassisted Kelvin force microscopy , 2006 .

[37]  Wenguang Tu,et al.  Au@TiO₂ yolk-shell hollow spheres for plasmon-induced photocatalytic reduction of CO₂ to solar fuel via a local electromagnetic field. , 2015, Nanoscale.

[38]  H. Xu,et al.  Facile synthesis of Ag@TiO2 (B) hierarchical core–shell nanowires: facile synthesis, growth mechanism and photocatalytic and antibacterial applications , 2015, Journal of Materials Science: Materials in Electronics.

[39]  Jinghua Teng,et al.  In Situ "Doping" Inverse Silica Opals with Size-Controllable Gold Nanoparticles for Refractive Index Sensing , 2013 .

[40]  Yujie Feng,et al.  Phosphate-bridged TiO2–BiVO4 nanocomposites with exceptional visible activities for photocatalytic water splitting , 2015 .

[41]  Hiromi Yamashita,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts , 2012 .

[42]  C. Sow,et al.  Plasmon-enhanced photocatalytic properties of Cu2O nanowire-Au nanoparticle assemblies. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[43]  Yong Zhou,et al.  A room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. , 2010, Angewandte Chemie.

[44]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[45]  M. Lu,et al.  Plasmonic enhancement of Au nanoparticle—embedded single-crystalline ZnO nanowire dye-sensitized solar cells , 2016 .

[46]  Georg von Freymann,et al.  Effect of disorder on the optically amplified photocatalytic efficiency of titania inverse opals. , 2007, Journal of the American Chemical Society.

[47]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[48]  P. Yang,et al.  Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. , 2012, ACS nano.

[49]  M. Grätzel,et al.  An efficient dye-sensitized solar cell with an organic sensitizer encapsulated in a cyclodextrin cavity. , 2009, Angewandte Chemie.

[50]  Yang Xu,et al.  Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. , 2014, ACS nano.

[51]  P. Braun,et al.  Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells. , 2011, Angewandte Chemie.

[52]  Wenguang Tu,et al.  Double-shelled plasmonic Ag-TiO2 hollow spheres toward visible light-active photocatalytic conversion of CO2 into solar fuel , 2015 .

[53]  Chuncheng Chen,et al.  Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst , 2002 .

[54]  Danzhen Li,et al.  A facile preparation of ZnGa2O4 photonic crystals with enhanced light absorption and photocatalytic activity , 2014 .

[55]  D. Solli,et al.  Polarization-dependent reflective dispersion relations of photonic crystals for waveplate mirror construction , 2006, Journal of Lightwave Technology.

[56]  Xiangang Luo,et al.  Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes , 2010, Advanced materials.

[57]  Zhenyi Zhang,et al.  Au/Pt Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion , 2013 .

[58]  T. Peng,et al.  Pt-loading reverses the photocatalytic activity order of anatase TiO2 {0 0 1} and {0 1 0} facets for photoreduction of CO2 to CH4 , 2014 .

[59]  K. Ho,et al.  Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes. , 2012, Optics express.

[60]  Ye Wang,et al.  Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion. , 2013, Physical chemistry chemical physics : PCCP.

[61]  A. Rothschild,et al.  Resonant light trapping in ultrathin films for water splitting. , 2013, Nature materials.

[62]  Jingxia Wang,et al.  Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal , 2010 .

[63]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[64]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[65]  Daniel M. Mittleman,et al.  Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids , 1999 .

[66]  Qianqian Li,et al.  Interface engineering for efficient charge collection in Cu2O/ZnO heterojunction solar cells with ordered ZnO cavity-like nanopatterns , 2013 .

[67]  H. Schobert,et al.  Photoinduced activation of CO2 on TiO2 surfaces: Quantum chemical modeling of CO2 adsorption on oxygen vacancies , 2011 .

[68]  Jungang Hou,et al.  Three-Dimensional Bimetal-Graphene-Semiconductor Coaxial Nanowire Arrays to Harness Charge Flow for the Photochemical Reduction of Carbon Dioxide. , 2015, Angewandte Chemie.

[69]  A. J. Frank,et al.  Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. , 2003, Journal of the American Chemical Society.

[70]  A. Kudo,et al.  Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. , 2011, Journal of the American Chemical Society.

[71]  J. Teng,et al.  Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[72]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[73]  Danzhen Li,et al.  High-efficient Degradation of Dyes by ZnxCd1−xS Solid Solutions under Visible Light Irradiation , 2008 .

[74]  J. Aizpurua,et al.  Controlling subnanometer gaps in plasmonic dimers using graphene. , 2013, Nano letters.

[75]  J. Baumberg,et al.  Al-doped ZnO inverse opal networks as efficient electron collectors in BiVO 4 photoanodes for solar water oxidation† , 2014 .

[76]  Geoffrey A. Ozin,et al.  Amplified Photochemistry with Slow Photons , 2006 .

[77]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[78]  F. Sordello,et al.  Photoelectrochemical study of TiO2 inverse opals , 2011 .

[79]  Danzhen Li,et al.  Integrating photonic bandgaps with surface plasmon resonance for the enhancement of visible-light photocatalytic performance , 2015 .

[80]  G. Sahu,et al.  Synthesis and application of core-shell Au–TiO2 nanowire photoanode materials for dye sensitized solar cells , 2012 .

[81]  Y. X. Yeng,et al.  Recent developments in high-temperature photonic crystals for energy conversion , 2012 .

[82]  K. Sakoda,et al.  Enhanced light amplification due to group-velocity anomaly peculiar to two- and three-dimensional photonic crystals. , 1999, Optics express.

[83]  Qi Li,et al.  Inverse Opal Structure of Nitrogen‐Doped Titanium Oxide with Enhanced Visible‐Light Photocatalytic Activity , 2008 .

[84]  G. Stucky,et al.  Plasmonic photoanodes for solar water splitting with visible light. , 2012, Nano letters.

[85]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[86]  Ping-Ji Huang,et al.  Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra. , 2009, Optics express.

[87]  Jingxia Wang,et al.  Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability. , 2009, Environmental science & technology.

[88]  T. Do,et al.  Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light-driven photocatalysis. , 2014, Angewandte Chemie.

[89]  Hyunjung Lee,et al.  Rapid Fabrication of an Inverse Opal TiO2 Photoelectrode for DSSC Using a Binary Mixture of TiO2 Nanoparticles and Polymer Microspheres , 2011 .

[90]  William R. Erwin,et al.  Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures , 2014 .

[91]  A. Tok,et al.  Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. , 2012, Small.

[92]  A. Jen,et al.  Manipulation of optical field distribution in ITO-free micro-cavity polymer tandem solar cells via the out-of-cell capping layer for high photovoltaic performance , 2016 .

[93]  M. El-Sayed,et al.  Following charge separation on the nanoscale in Cu₂O-Au nanoframe hollow nanoparticles. , 2011, Nano letters.

[94]  M. Grätzel,et al.  Solution transformation of Cu₂O into CuInS₂ for solar water splitting. , 2015, Nano letters.

[95]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[96]  Peter Peumans,et al.  An effective light trapping configuration for thin-film solar cells , 2007 .

[97]  Di Zhang,et al.  Photonic crystal coupled plasmonic nanoparticle array for resonant enhancement of light harvesting and power conversion. , 2012, Physical chemistry chemical physics : PCCP.

[98]  H. Atwater,et al.  Plasmon dispersion in coaxial waveguides from single-cavity optical transmission measurements. , 2009, Nano letters.

[99]  R. Ravikrishna,et al.  Photocatalytic degradation of gaseous organic species on photonic band-gap titania. , 2006, Environmental science & technology.

[100]  Susumu Noda,et al.  Manipulation of photons at the surface of three-dimensional photonic crystals , 2009, Nature.

[101]  N. S. Amin,et al.  Gold-nanoparticle-modified TiO2 nanowires for plasmon-enhanced photocatalytic CO2 reduction with H2 under visible light irradiation , 2015 .

[102]  Hee‐Tae Jung,et al.  Highly efficient top-illuminated flexible polymer solar cells with a nanopatterned 3D microresonant cavity. , 2014, Small.

[103]  Gongxuan Lu,et al.  New facile synthesis of one-dimensional Ag@TiO2 anatase core–shell nanowires for enhanced photocatalytic properties , 2014 .

[104]  Danzhen Li,et al.  Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties , 2015 .

[105]  Michael Grätzel,et al.  Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .

[106]  Jung-Yong Lee,et al.  Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. , 2014, ACS nano.

[107]  Shutao Wang,et al.  Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. , 2012, Nanoscale.

[108]  Shaowu Wang,et al.  Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires. , 2012, Nanoscale.

[109]  Pochi Yeh,et al.  Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) , 1997 .

[110]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[111]  G. Madras,et al.  New insights into electronic and geometric effects in the enhanced photoelectrooxidation of ethanol Using ZnO nanorod/ultrathin Au nanowire hybrids. , 2014, Journal of the American Chemical Society.

[112]  Zhongqiang Hu,et al.  Enhancement of properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanowire core–shell structure in TiO2 films , 2013 .

[113]  J. Baumberg,et al.  Plasmonic Enhancement in BiVO4 Photonic Crystals for Efficient Water Splitting , 2014, Small.

[114]  Danzhen Li,et al.  Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes , 2013 .

[115]  Armando C. Oliveira,et al.  Concentrated solar power for renewable electricity and hydrogen production from water—a review , 2010 .

[116]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[117]  Peng Wang,et al.  Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. , 2013, Nano letters.

[118]  J. You,et al.  Origin of superior photocatalytic activity in rutile TiO2 hierarchical microspheres: The dominate role of “microcavity” structure , 2014 .

[119]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[120]  Xueping Gao,et al.  Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. , 2008, Angewandte Chemie.

[121]  William R. Erwin,et al.  Light trapping in mesoporous solar cells with plasmonic nanostructures , 2016 .

[122]  K. Vahala Optical microcavities : Photonic technologies , 2003 .

[123]  Bowen Zhu,et al.  Programmable Photo‐Electrochemical Hydrogen Evolution Based on Multi‐Segmented CdS‐Au Nanorod Arrays , 2014, Advanced materials.

[124]  Di Wu,et al.  Single-crystalline, ultrathin ZnGa(2)O(4) nanosheet scaffolds to promote photocatalytic activity in CO(2) reduction into methane. , 2014, ACS applied materials & interfaces.

[125]  Zhifeng Liu,et al.  AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting , 2015 .

[126]  X. Lou,et al.  Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. , 2013, Angewandte Chemie.

[127]  Yajun Wang,et al.  A photonic crystal-based CdS–Au–WO3 heterostructure for efficient visible-light photocatalytic hydrogen and oxygen evolution , 2014 .

[128]  Dong Ha Kim,et al.  Surface-Plasmon-Induced Visible Light Photocatalytic Activity of TiO2 Nanospheres Decorated by Au Nanoparticles with Controlled Configuration , 2012 .

[129]  Shihe Yang,et al.  Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting , 2014 .

[130]  T. Kunitake,et al.  Efficient fabrication and enhanced photocatalytic activities of 3D-ordered films of titania hollow spheres. , 2006, The journal of physical chemistry. B.

[131]  J. Durrant,et al.  Effect of Au surface plasmon nanoparticles on the selective CO2 photoreduction to CH4 , 2015 .

[132]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[133]  Danzhen Li,et al.  A high efficient photocatalyst Ag3VO4/TiO2/graphene nanocomposite with wide spectral response , 2013 .

[134]  Y. Tong,et al.  Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. , 2013, Nano letters.

[135]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[136]  Silvia Colodrero,et al.  Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications , 2011 .

[137]  F. Sordello,et al.  Photocatalytic metamaterials: TiO2 inverse opals. , 2011, Chemical communications.

[138]  Belén Ferrer,et al.  Visible-light photocatalytic activity of gold nanoparticles supported on template-synthesized mesoporous titania for the decontamination of the chemical warfare agent Soman , 2010 .

[139]  Jonathan K. Mapel,et al.  Surface plasmon polariton mediated energy transfer in organic photovoltaic devices , 2007 .

[140]  Danzhen Li,et al.  ZnO photonic crystals with enhanced photocatalytic activity and photostability , 2013 .

[141]  Changhua Wang,et al.  A novel preparation of three-dimensionally ordered macroporous M/Ti (M=Zr or Ta) mixed oxide nanoparticles with enhanced photocatalytic activity. , 2006, Journal of colloid and interface science.

[142]  Tsan-Yao Chen,et al.  Improving interfacial electron transfer and light harvesting in dye-sensitized solar cells by using Ag nanowire/TiO2 nanoparticle composite films , 2015 .

[143]  J. R. Wendt,et al.  Three-dimensional control of light in a two-dimensional photonic crystal slab , 2022 .

[144]  Lei Jiang,et al.  Hierarchical optical antenna: Gold nanoparticle-modified photonic crystal for highly-sensitive label-free DNA detection , 2012 .

[145]  J. Kang,et al.  Highly porous gallium oxide with a high CO2 affinity for the photocatalytic conversion of carbon dioxide into methane , 2012 .

[146]  X. Duan,et al.  Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods. , 2011, Journal of the American Chemical Society.

[147]  Yong Zhou,et al.  High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. , 2010, Journal of the American Chemical Society.

[148]  Yixin Zhao,et al.  Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials , 2012 .

[149]  Danzhen Li,et al.  Probing photonic effect on photocatalytic degradation of dyes based on 3D inverse opal ZnO photonic crystal , 2013 .

[150]  M. Mohamed,et al.  Comparative study of the photocatalytic activity of semiconductor nanostructures and their hybrid metal nanocomposites on the photodegradation of malathion , 2012 .

[151]  Hong-Bo Sun,et al.  Matching Photocurrents of Sub‐cells in Double‐Junction Organic Solar Cells via Coupling Between Surface Plasmon Polaritons and Microcavity Modes , 2013 .

[152]  Nicolas Bonod,et al.  Enhanced Light Harvesting in Semitransparent Organic Solar Cells using an Optical Metal Cavity Configuration , 2015 .

[153]  Juchuan Li,et al.  PANI-Sensitized N-TiO2 Inverse Opals with Enhanced Photoelectrochemical Performance and Photocatalytic Activity , 2014 .

[154]  S. G. Kumar,et al.  Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects , 2014 .

[155]  J. Baumberg,et al.  Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting , 2015, The journal of physical chemistry letters.

[156]  S. Kamarudin,et al.  Hydrogen from photo-catalytic water splitting process: A review , 2015 .

[157]  Y. Yang,et al.  Comparison of CO2 Photoreduction Systems: A Review , 2014 .

[158]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[159]  Light trapping schemes in organic solar cells: A comparison between optical Tamm states and Fabry-Pérot cavity modes , 2013 .

[160]  T. Mallouk,et al.  Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. , 2005, The journal of physical chemistry. B.