Robust Finite Word Length controller design

A novel Finite Word Length (FWL) controller design is proposed in the framework of a mixed @m theory. A robust FWL controller performance measure is first developed, which takes into account the standard robust control requirements as well as the FWL implementation considerations, and the corresponding controller design problem is naturally reformulated as a mixed @m problem which can be treated effectively with the results of the mixed @m theory.

[1]  Ju H. Park Robust non-fragile control for uncertain discrete-delay large-scale systems with a class of controller gain variations , 2004, Appl. Math. Comput..

[2]  Sheng Chen,et al.  An improved closed-loop stability related measure for finite-precision digital controller realizations , 2001, IEEE Trans. Autom. Control..

[3]  K. Grigoriadis,et al.  Optimal controllers for finite wordlength implementation , 1992 .

[4]  Jun-Hai Wu,et al.  Optimum structures of digital controllers in sampled-data systems: a roundoff noise analysis , 2002 .

[5]  B. Anderson,et al.  Digital control of dynamic systems , 1981, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[6]  R. Braatz,et al.  A tutorial on linear and bilinear matrix inequalities , 2000 .

[7]  Tetsuya Iwasaki,et al.  The dual iteration for fixed-order control , 1999, IEEE Trans. Autom. Control..

[8]  Jianliang Wang,et al.  Non-fragile guaranteed cost control for discrete-time uncertain linear systems , 2001, Int. J. Syst. Sci..

[9]  Gang Li,et al.  On the structure of digital controllers with finite word length consideration , 1998, IEEE Trans. Autom. Control..

[10]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[11]  James F. Whidborne,et al.  Digital Controller Implementation and Fragility: A Modern Perspective , 2001 .

[12]  S. Bhattacharyya,et al.  Stability margins and digital implementation of controllers , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[13]  Guang-Hong Yang,et al.  Guaranteed Cost Control for Discrete-Time Linear Systems under Controller Gain Perturbations , 2000 .

[14]  Emmanuel G. Collins,et al.  Optimal PID controller with finite word length implementation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[15]  Robert S. H. Istepanian,et al.  Design of full state feedback finite‐precision controllers , 2002 .

[16]  Tetsuya Iwasaki,et al.  A unified matrix inequality approach to linear control design , 1993 .

[17]  Guang-Hong Yang,et al.  Robust Non-Fragile Controller Design for Discrete Time Systems with FWL Consideration , 2001 .

[18]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[19]  M. Gevers,et al.  Parametrizations in Control, Estimation and Filtering Problems: Accuracy Aspects , 1993 .

[20]  Shankar P. Bhattacharyya,et al.  Robust, fragile or optimal? , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[21]  Tryphon T. Georgiou,et al.  On stability and performance of sampled-data systems subject to wordlength constraint , 1994 .

[22]  J. L. Wang,et al.  Resilient guaranteed cost control to tolerate actuator faults for discrete-time uncertain linear systems , 2000 .

[23]  Patrick E. Mantey Eigenvalue sensitivity and state-variable selection , 1968 .

[24]  Peter M. Young,et al.  Robustness with parametric and dynamic uncertainty , 1993 .

[25]  James F. Whidborne,et al.  Finite word length stability issues in an l1 framework , 2000 .

[26]  Michel Verhaegen,et al.  Robust output-feedback controller design via local BMI optimization , 2004, Autom..

[27]  Pertti M. Mäkilä,et al.  Defragilization in optimal design and its application to fixed structure LQ controller design , 2001, IEEE Trans. Control. Syst. Technol..

[28]  Magdi S. Mahmoud,et al.  New results on robust control design of discrete-time uncertain systems , 2005 .

[29]  A. Michel,et al.  Quantization and overflow effects in digital implementations of linear dynamic controllers , 1988 .

[30]  W. Yu,et al.  Improved eigenvalue sensitivity for finite-precision digital controller realisations via orthogonal Hermitian transform , 2003 .