Modelling of endogenous technological learning of energy technologies - an analysis with a global multi-regional energy system model

XIII

[1]  Alexei G. Sankovski,et al.  Special report on emissions scenarios , 2000 .

[2]  Chihiro Watanabe,et al.  Industrial dynamism and the creation of a “virtuous cycle” between R&D, market growth and price reduction: The case of photovoltaic power generation (PV) development in Japan , 2000 .

[3]  Ugo Farinelli,et al.  Energy efficiency in China , 2001 .

[4]  A. Reddy,et al.  ENERGY FOR A SUSTAINABLE ROAD/RAIL TRANSPORT SYSTEM IN INDIA , 2000 .

[5]  Clas-Otto Wene,et al.  ASSESSING NEW ENERGY TECHNOLOGIES USING AN ENERGY SYSTEM MODEL WITH ENDOGENIZED EXPERIENCE CURVES , 1997 .

[6]  C. Mints,et al.  D 1.1 Fuel Cell Technologies and Hydrogen Production/Distribution Options , 2005 .

[7]  Leo Schrattenholzer,et al.  Technology dynamics in energy systems models with perfect foresight , 2000 .

[8]  Antonio Soria,et al.  Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching , 2000 .

[9]  Li Zheng,et al.  Case-study of a coal gasification-based energy supply system for China , 2003 .

[10]  S. Isoard,et al.  Endogenous learning in world post-Kyoto scenarios: application of the POLES model under adaptive expectations , 2000 .

[11]  Asami Miketa,et al.  Public R&D Innovation: The Case of Wind Energy in Denmark, Germany and the United Kingdom , 2003 .

[12]  Socrates Kypreos,et al.  Endogenizing R&D and Market Experience in the "Bottom-Up" Energy-Systems ERIS Model , 2004 .

[13]  Chihiro Watanabe,et al.  The feedback loop between technology and economic development: An examination of Japanese industry☆ , 1995 .

[14]  T. P. Wright,et al.  Factors affecting the cost of airplanes , 1936 .

[15]  G. Goldstein,et al.  MESAP / TIMES — Advanced Decision Support for Energy and Environmental Planning , 2002 .

[16]  Chihiro Watanabe,et al.  Global Technology Spillover and its Impact on Industry's R&D Strategies , 2001 .

[17]  Robert U. Ayres,et al.  Experience and the life cycle: Some analytic implications , 1992 .

[18]  G. Goldstein,et al.  ENERGY PLANNING AND THE DEVELOPMENT OF CARBON MITIGATION STRATEGIES USING THE MARKAL FAMILY OF MODELS , 2001 .

[19]  R. Loulou,et al.  Documentation for the TIMES Model PART I April 2005 , 2005 .

[20]  Linda M. Kamp,et al.  Learning in wind turbine development , 2002 .

[21]  C. Wene Experience Curves for Energy Technology Policy , 2000 .

[22]  Kokichi Ito,et al.  Ultra-Long Term Global Energy Supply/Demand Models And Simulation Analyses * , 2000 .

[23]  Peter R. Odell,et al.  Dynamics of energy technologies and global change , 1999 .

[24]  A. J. Seebregts,et al.  THE LONG TERM POTENTIAL OF FUSION POWER IN WESTERN EUROPE , 1998 .

[25]  Roger Jones,et al.  THE BENEFITS OF CLIMATE POLICY: IMPROVING INFORMATION FOR POLICY MAKERS , 2003 .

[26]  S. Hultén,et al.  Escaping lock-in: The case of the electric vehicle☆ , 1996 .

[27]  Eastern India,et al.  INTEGRATED AQUACULTURE IN EASTERN INDIA DFID NRSP High Potential Systems , 1998 .

[28]  Muxidi Beilijia,et al.  Biomass energy in China and its potential , 2003 .

[29]  Timothy E Lipman,et al.  What Will Power the Hydrogen Economy? Present and Future Sources of Hydrogen Energy , 2004 .

[30]  W. Nordhaus,et al.  Roll the DICE Again: Economic Models of Global Warming , 1999 .

[31]  Poul Erik Morthorst,et al.  Experience curves: A tool for energy policy assessment , 2003 .

[32]  Bob van der Zwaan,et al.  Endogenous technological change in climate-energy-economic models : an inventory of key uncertainties , 2002 .