Bats are still not birds in the digital era: echolocation call variation and why it matters for bat species identification

The recording and analysis of echolocation calls are fundamental methods used to study bat distribution, ecology and behavior. However, the goal of identifying bats in flight from their echolocation calls is not always possible. Unlike bird songs, bat calls show large variation which often makes identification challenging. The problem has not been fully overcome by modern digital-based hardware and software for bat call recording and analysis. Besides providing fundamental insights into bat physiology, ecology and behavior, a better understanding of call variation is therefore crucial to best recognize limits and perspectives of call classification. We provide a comprehensive overview of sources of interspecific and intraspecific echolocation call variation, illustrating its adaptive significance and highlighting gaps in knowledge. We remark that further research is needed to better comprehend call variation and control for it more effectively in sound analysis. Despite the state-of-art technology in this...

[1]  Lasse Jakobsen,et al.  Vespertilionid bats control the width of their biosonar sound beam dynamically during prey pursuit , 2010, Proceedings of the National Academy of Sciences.

[2]  B. Siemers,et al.  Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats? , 2005 .

[3]  B. Siemers,et al.  The communicative potential of bat echolocation pulses , 2011, Journal of Comparative Physiology A.

[4]  Marc W. Holderied,et al.  Echolocation calls produced by Kuhl's pipistrelles in different flight situations , 2007 .

[5]  S. Rossiter,et al.  Population genetic structure and demographic history of the endemic Formosan lesser horseshoe bat (Rhinolophus monoceros) , 2006, Molecular ecology.

[6]  H. Schnitzler,et al.  Echolocation by Insect-Eating Bats , 2001 .

[7]  ‘Compromise’ in Echolocation Calls between Different Colonies of the Intermediate Leaf-Nosed Bat (Hipposideros larvatus) , 2016, PloS one.

[8]  Christian C. Voigt,et al.  The use of automated identification of bat echolocation calls in acoustic monitoring: A cautionary note for a sound analysis , 2016 .

[10]  Echolocating bats emit terminal phase buzz calls while drinking on the wing , 2013, Behavioural Processes.

[11]  Gary F. McCracken,et al.  Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment , 2007, Animal Behaviour.

[12]  James A Simmons,et al.  Jamming avoidance response of big brown bats in target detection , 2008, Journal of Experimental Biology.

[13]  B. Siemers,et al.  Trawling bats exploit an echo-acoustic ground effect , 2013, Front. Physiol..

[14]  D. Jacobs,et al.  Morphological correlates of echolocation frequency in the endemic Cape horseshoe bat, Rhinolophus capensis (Chiroptera: Rhinolophidae) , 2011, Journal of Comparative Physiology A.

[15]  C. A. Long,et al.  Biology of Bats , 1972 .

[16]  M. B. Fenton,et al.  Resource partitioning by insectivorous bats in Jamaica , 2014, Molecular ecology.

[17]  M. Brock Fenton,et al.  The foraging behaviour and ecology of animal-eating bats , 1990 .

[18]  D. Fukui,et al.  Diet of three sympatric insectivorous bat species on Ishigaki Island, Japan , 2009 .

[19]  Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey , 2010, Biology Letters.

[20]  R. Barclay,et al.  The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? , 2007, Oecologia.

[21]  Walter Metzner,et al.  Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats , 2013, Communicative & integrative biology.

[22]  E. Kalko,et al.  Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata , 2011, Journal of Comparative Physiology A.

[23]  M. Knörnschild Vocal production learning in bats , 2014, Current Opinion in Neurobiology.

[24]  S. Puechmaille,et al.  Factors Affecting Geographic Variation in Echolocation Calls of the Endemic Myotis davidii in China , 2013 .

[25]  H. Riquimaroux,et al.  Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members , 2006, Journal of Comparative Physiology A.

[26]  M. Brock Fenton,et al.  Echolocation: Implications for Ecology and Evolution of Bats , 1984, The Quarterly Review of Biology.

[27]  N. Ulanovsky,et al.  Dynamics of jamming avoidance in echolocating bats , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[28]  D. Jacobs The diet of the insectivorous Hawaiian hoary bat (Lasiurus cinereus semotus) in an open and a cluttered habitat , 1999 .

[29]  G. Jones Does echolocation constrain the evolution of body size in bats , 1996 .

[30]  J. Rayner,et al.  Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation , 1987 .

[31]  Guillén,et al.  Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats , 1999 .

[32]  B. Siemers,et al.  Variability in Echolocation Call Intensity in a Community of Horseshoe Bats: A Role for Resource Partitioning or Communication? , 2010, PloS one.

[33]  H. Schnitzler,et al.  Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera-Rhinolophidae) in verschiedenen Orientierungssituationen , 1968, Zeitschrift für vergleichende Physiologie.

[34]  S. Burnett,et al.  DISCRIMINATING INDIVIDUAL BIG BROWN BAT (EPTESICUS FUSCUS) SONAR VOCALIZATIONS IN DIFFERENT RECORDING SITUATIONS , 2001 .

[35]  M. Smotherman,et al.  Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats , 2009, Journal of Comparative Physiology A.

[36]  P. Hedrick Neutrality or selection? , 1997, Nature.

[37]  L. Miller,et al.  How Some Insects Detect and Avoid Being Eaten by Bats: Tactics and Countertactics of Prey and Predator , 2001 .

[38]  Katrine Hulgard,et al.  Niche-specific cognitive strategies: object memory interferes with spatial memory in the predatory bat Myotis nattereri , 2014, Journal of Experimental Biology.

[39]  J. Aihartza,et al.  Echolocation calls and morphology in the Mehelyi’s ( Rhinolophus mehelyi ) and mediterranean ( R. euryale ) horseshoe bats: implications for resource partitioning , 2006 .

[40]  S. Parsons The effect of recording situation on the echolocation calls of the New Zealand lesser short‐tailed bat (Mystacina tuberculata Gray) , 1998 .

[41]  M. Kawata,et al.  Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission? , 2008, Molecular ecology.

[42]  Gareth Jones,et al.  Attack and defence: interactions between echolocating bats and their insect prey , 2003 .

[43]  Emma C. Teeling,et al.  Female Mate Choice Can Drive the Evolution of High Frequency Echolocation in Bats: A Case Study with Rhinolophus mehelyi , 2014, PloS one.

[44]  J. Ratcliffe,et al.  Clutter and conspecifics: a comparison of their influence on echolocation and flight behaviour in Daubenton’s bat, Myotis daubentonii , 2014, Journal of Comparative Physiology A.

[45]  G. Pollak,et al.  Disproportionate frequency representation in the inferior colliculus of doppler-compensating Greater Horseshoe bats: Evidence for an acoustic fovea , 2004, Journal of comparative physiology.

[46]  Arjan Boonman,et al.  On-board recordings reveal no jamming avoidance in wild bats , 2015, Proceedings of the Royal Society B: Biological Sciences.

[47]  D. Jacobs,et al.  Sensory trait variation in an echolocating bat suggests roles for both selection and plasticity , 2014, BMC Evolutionary Biology.

[48]  Annemarie Surlykke,et al.  Echolocation in the bat, Rhinolophus capensis: the influence of clutter, conspecifics and prey on call design and intensity , 2015, Biology Open.

[49]  R. B. Coles,et al.  ECHOLOCATION CALL FREQUENCY DIFFERENCES BETWEEN GEOGRAPHIC ISOLATES OF RHINONICTERIS AURANTIA (CHIROPTERA: HIPPOSIDERIDAE): IMPLICATIONS OF NASAL CHAMBER SIZE , 2007 .

[50]  M. B. Fenton,et al.  High duty cycle echolocation and prey detection by bats , 2011, Journal of Experimental Biology.

[51]  S. Goodman,et al.  Evidence of Echolocation Call Divergence in Hipposideros commersoni Sensu Stricto (E. Geoffroy, 1803) from Madagascar and Correlation with Body Size , 2015 .

[52]  Plasticity in the Echolocation Inventory of Mormopterus minutus (Chiroptera, Molossidae) , 2011 .

[53]  Gareth Jones,et al.  Sex and age differences in the echolocation calls of the lesser horseshoe bat, Rhinolophus hipposideros , 1992 .

[54]  E. Snell-Rood,et al.  The effect of climate on acoustic signals: does atmospheric sound absorption matter for bird song and bat echolocation? , 2012, The Journal of the Acoustical Society of America.

[55]  Kate E. Jones,et al.  Acoustic identification of Mexican bats based on taxonomic and ecological constraints on call design , 2016 .

[56]  H. Schnitzler,et al.  Echolocation signals reflect niche differentiation in five sympatric congeneric bat species , 2004, Nature.

[57]  J. Gaisler,et al.  Can pipistrelles, Pipistrellus pipistrellus (Schreber, 1774) and Pipistrellus pygmaeus (Leach, 1825), foraging in a group, change parameters of their signals? , 2007 .

[58]  R. Wayne,et al.  DNA answers the call of pipistrelle bat species , 1997, Nature.

[59]  J. Mora Bats, from Evolution to Conservation , 2011 .

[60]  D. Jacobs,et al.  Sensory Drive Mediated by Climatic Gradients Partially Explains Divergence in Acoustic Signals in Two Horseshoe Bat Species, Rhinolophus swinnyi and Rhinolophus simulator , 2016, PloS one.

[61]  M. Obrist Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design , 1995, Behavioral Ecology and Sociobiology.

[62]  Nachum Ulanovsky,et al.  Rapid jamming avoidance in biosonar , 2007, Proceedings of the Royal Society B: Biological Sciences.

[63]  H. Schnitzler,et al.  Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection , 1993, Behavioral Ecology and Sociobiology.

[64]  Dean A. Waters,et al.  Echolocation call design and limits on prey size: a case study using the aerial-hawking bat Nyctalus leisleri , 1995, Behavioral Ecology and Sociobiology.

[65]  M. Wund,et al.  Variation in the Echolocation Calls of Little Brown Bats (Myotis lucifugus) in Response to Different Habitats , 2006 .

[66]  H. Schnitzler,et al.  Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertilionidae): a convergent case with European species of Pipistrellus? , 2001, Behavioral Ecology and Sociobiology.

[67]  Gaddi Blumrosen,et al.  Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats , 2015, Proceedings of the Royal Society B: Biological Sciences.

[68]  Silvio Macías,et al.  THE ECHOLOCATION BEHAVIOUR OF NYCTICEIUS CUBANUS (CHIROPTERA: VESPERTILIONIDAE): INTER- AND INTRA-INDIVIDUAL PLASTICITY IN VOCAL SIGNATURES , 2005 .

[69]  M. Holderied,et al.  Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces , 2015, eLife.

[70]  Michael F Land,et al.  Biology of Sensory Systems , 2000, Trends in Neurosciences.

[71]  M. Fenton,et al.  Behaviour and Foraging Ecology of Echolocating Bats , 1988 .

[72]  B. Siemers,et al.  Global warming alters sound transmission: differential impact on the prey detection ability of echolocating bats , 2014, Journal of The Royal Society Interface.

[73]  Stephen J. Rossiter,et al.  Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s.l . (Chiroptera: Hipposideridae) from the Indo-Malayan region , 2006 .

[74]  Charles R. Michael,et al.  The echolocation of flying insects by bats , 1960 .

[75]  B. Miller,et al.  Wing morphology, echolocation, and resource partitioning in syntopic Cuban mormoopid bats , 2012 .

[76]  S. Robson,et al.  Echolocation call intensity in the aerial hawking bat Eptesicus bottae (Vespertilionidae) studied using stereo videogrammetry , 2005, Journal of Experimental Biology.

[77]  Modelling the prey detection performance of Rhinonicteris aurantia (Chiroptera: Hipposideridae) in different atmospheric conditions discounts the notional role of relative humidity in adaptive evolution. , 2011, Journal of theoretical biology.

[78]  J. Fullard,et al.  Beware of bats, beware of birds: the auditory responses of eared moths to bat and bird predation , 2008 .

[79]  S. Macias,et al.  VARIATION OF ECHOLOCATION CALLS OF PTERONOTUS QUADRIDENS (CHIROPTERA: MORMOOPIDAE) IN CUBA , 2003 .

[80]  M. Holderied,et al.  Bat echolocation calls: adaptation and convergent evolution , 2007, Proceedings of the Royal Society B: Biological Sciences.

[81]  Gareth J. F. Jones Flight performance, echolocation and foraging behaviour in noctule bats Nyctalus noctula , 1995 .

[82]  E. Britzke,et al.  VARIATION IN SEARCH-PHASE CALLS OF BATS , 2001 .

[83]  L. Boitani,et al.  Foraging requirements of the endangered long-fingered bat: the influence of micro-habitat structure, water quality and prey type , 2007 .

[84]  Hans-Ulrich Schnitzler,et al.  Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats , 2013, Front. Physiol..

[85]  M. Brock Fenton,et al.  Assessing signal variability and reliability: 'to thine ownself be true' , 1994, Animal Behaviour.

[86]  J. David Pye IS FIDELITY FUTILE? THE ‘TRUE’ SIGNAL IS ILLUSORY, ESPECIALLY WITH ULTRASOUND , 1993 .

[87]  S. V. Van Parijs,et al.  Bimodal echolocation in pipistrelle bats: are cryptic species present? , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[88]  D. Jacobs,et al.  The Divergence of Echolocation Frequency in Horseshoe Bats: Moth Hearing, Body Size or Habitat? , 2011, Journal of Mammalian Evolution.

[89]  Nathan J. Kleist,et al.  Anthropogenic Noise Alters Bat Activity Levels and Echolocation Calls , 2015 .

[90]  Carles Flaquer,et al.  COMPARISON OF SAMPLING METHODS FOR INVENTORY OF BAT COMMUNITIES , 2007 .

[91]  Raphaël Arlettaz,et al.  Effect of acoustic clutter on prey detection by bats , 2001, Nature.

[92]  H. Schnitzler,et al.  Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals , 2011, Journal of Comparative Physiology A.

[93]  D. J. Howell,et al.  Information content of bat sonar echoes. , 1975, American scientist.

[94]  E. Kalko,et al.  Echolocating Bats Cry Out Loud to Detect Their Prey , 2008, PloS one.

[95]  I. Garin,et al.  Evidences of Piscivory by Myotis capaccinii (Bonaparte, 1837) in Southern Iberian Peninsula , 2003 .

[96]  G. Neuweiler Auditory adaptations for prey capture in echolocating bats. , 1990, Physiological reviews.

[97]  W. A. Lavender,et al.  Echolocation by free-tailed bats (Tadarida) , 1978, Journal of comparative physiology.

[98]  M. Begon,et al.  Ecology: From Individuals to Ecosystems , 2005 .

[99]  S. Parsons,et al.  Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. , 2000, The Journal of experimental biology.

[100]  Henrik Brumm,et al.  Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise , 2015, Scientific Reports.

[101]  E. Kalko,et al.  Driving Factors for the Evolution of Species-Specific Echolocation Call Design in New World Free-Tailed Bats (Molossidae) , 2014, PloS one.

[102]  Gareth Jones,et al.  Function of pipistrelle social calls: field data and a playback experiment , 1997, Animal Behaviour.

[103]  Guanjun Lu,et al.  Behavioural response of the greater horseshoe bat to geographical variation in echolocation calls , 2016, Behavioral Ecology and Sociobiology.

[104]  G. Neuweiler,et al.  Echolocation in the notch-eared bat, Myotis emarginatus , 1991, Behavioral Ecology and Sociobiology.

[105]  Antton Alberdi,et al.  Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey , 2014, Journal of Experimental Biology.

[106]  Gareth Jones,et al.  Bats vs moths: studies on the diets of rhinolophid and hipposiderid bats support the allotonic frequency hypothesis , 1992 .

[107]  B. M. Siemers Finding prey by associative learning in gleaning bats: experiments with a Natterer`s bat Myotis nattereri , 2001 .

[108]  Cryptic species of echolocating bats , 2004 .

[109]  H. Schnitzler,et al.  From spatial orientation to food acquisition in echolocating bats , 2003 .

[110]  O. Henson,et al.  Cochlear and CNS tonotopy: Normal physiological shifts in the mustached bat , 1991, Hearing Research.

[111]  A. Bastian,et al.  Listening carefully: increased perceptual acuity for species discrimination in multispecies signalling assemblages , 2015, Animal Behaviour.

[112]  A. Grinnell,et al.  Echolocation, development, and vocal communication in the lesser bulldog bat, Noctilio albiventris , 1983, Behavioral Ecology and Sociobiology.

[113]  J. Simmons,et al.  Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. , 1982, The Journal of the Acoustical Society of America.

[114]  E. Kalko,et al.  Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis , 2013, Proceedings of the Royal Society B: Biological Sciences.

[115]  Gareth Jones,et al.  Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros) , 2009, Proceedings of the Royal Society B: Biological Sciences.

[116]  M. K. Obrist,et al.  Signal strength, timing, and self-deafening: the evolution of echolocation in bats , 1995, Paleobiology.

[117]  F. Mathews,et al.  Roads and bats: a meta‐analysis and review of the evidence on vehicle collisions and barrier effects , 2016, Mammal review.

[118]  M. Brock Fenton,et al.  Conspecifics influence call design in the Brazilian free-tailed bat, Tadarida brasiliensis , 2004 .

[119]  S Schmidt,et al.  Perception of structured phantom targets in the echolocating bat, Megaderma lyra. , 1992, The Journal of the Acoustical Society of America.

[120]  M. Clement,et al.  The effect of call libraries and acoustic filters on the identification of bat echolocation , 2014, Ecology and evolution.

[121]  J. A. Simonetti,et al.  Variation in search-phase calls of Lasiurus varius (Chiroptera: Vespertilionidae) in response to different foraging habitats , 2014 .

[122]  The defensive function of auditory enhancers in the neotropical moth Antaea lichyi (Lepidoptera: Notodontidae) , 1987 .

[123]  Danilo Russo,et al.  Testing the performances of automated identification of bat echolocation calls: A request for prudence , 2017 .

[124]  L. Miller,et al.  Echolocation in two very small bats from Thailand Craseonycteris thonglongyai and Myotis siligorensis , 1993, Behavioral Ecology and Sociobiology.

[125]  Matthias O. Franz,et al.  The Voice of Bats: How Greater Mouse-eared Bats Recognize Individuals Based on Their Echolocation Calls , 2009, PLoS Comput. Biol..

[126]  R. Plowright,et al.  Multiple mortality events in bats: a global review. , 2016, Mammal review.

[127]  Gareth Jones,et al.  Echolocation calls of bats are influenced by maternal effects and change over a lifetime , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[128]  Thomas H. Kunz,et al.  Echolocation behavior of Brazilian free-tailed bats during dense emergence flights , 2010 .

[129]  C. Moss,et al.  The sonar beam pattern of a flying bat as it tracks tethered insects. , 2003, The Journal of the Acoustical Society of America.

[130]  David S. Jacobs,et al.  Variation in the echolocation calls of the hoary bat (Lasiurus cinereus) : influence of body size, habitat structure, and geographic location , 1999 .

[131]  H. Riquimaroux,et al.  Adaptive beam-width control of echolocation sounds by CF–FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight , 2013, Journal of Experimental Biology.

[132]  J. Fullard The Sensory Coevolution of Moths and Bats , 1998 .

[133]  Karl J. Friston,et al.  Echolocation , 2005, Current Biology.

[134]  H. Aldridge,et al.  Morphology echolocation and resource partitioning in insectivorous bats , 1987 .

[135]  K. Heller Echolocation and body size in insectivorous bats: the case of the giant naked bat Cheiromeles torquatus (Molossidae) , 1996 .

[136]  T. Kunz,et al.  Resource partitioning in rhinolophoid bats revisited , 2000, Oecologia.

[137]  H. Schnitzler,et al.  Bidirectional Echolocation in the Bat Barbastella barbastellus: Different Signals of Low Source Level Are Emitted Upward through the Nose and Downward through the Mouth , 2015, PloS one.

[138]  C. Ibáñez,et al.  Habitat Variation and Jamming Avoidance in Echolocation Calls of the Sac-winged Bat (Balantiopteryx plicata) , 2004 .

[139]  Gareth Jones,et al.  The evolution of echolocation in bats. , 2006, Trends in ecology & evolution.

[140]  M. Holderied,et al.  A whispering bat that screams: bimodal switch of foraging guild from gleaning to aerial hawking in the desert long-eared bat , 2014, Journal of Experimental Biology.

[141]  Hans-Ulrich Schnitzler,et al.  No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats , 2016, Scientific Reports.

[142]  Lasse Jakobsen,et al.  Convergent acoustic field of view in echolocating bats , 2012, Nature.

[143]  J. Simmons,et al.  Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation , 1980, Journal of comparative physiology.

[144]  G Jones,et al.  Scaling of echolocation call parameters in bats. , 1999, The Journal of experimental biology.

[145]  G. McCracken,et al.  Bats aloft: variability in echolocation call structure at high altitudes , 2009, Behavioral Ecology and Sociobiology.

[146]  Danilo Russo,et al.  Divergent echolocation call frequencies in insular rhinolophids (Chiroptera): a case of character displacement? , 2007 .

[147]  K. Kazial,et al.  Little Brown Bats (Myotis lucifugus) Recognize Individual Identity of Conspecifics Using Sonar Calls , 2008 .

[148]  W. Metzner,et al.  Variation in the resting frequency of Rhinolophus pusillus in Mainland China: effect of climate and implications for conservation. , 2010, The Journal of the Acoustical Society of America.

[149]  W. M. Masters,et al.  Sonar signals of big brown bats, Eptesicus fuscus, contain information about individual identity, age and family affiliation , 1995, Animal Behaviour.

[150]  The Buzz of Drinking on the Wing in Echolocating Bats , 2016 .

[151]  S. Rossiter,et al.  Harmonic-hopping in Wallacea's bats , 2004, Nature.

[152]  P. A. RKey No cost of echolocation for bats in flight , 2007 .

[153]  S. Harris,et al.  Identification of British bat species by multivariate analysis of echolocation call parameters , 1997 .

[154]  Stuart Parsons,et al.  Acoustic identification of 12 species of echolocating bat by discriminant function analysis and artificial neural networks , 2000 .

[155]  M. Wund,et al.  Learning and the development of habitat-specific bat echolocation , 2005, Animal Behaviour.

[156]  T. Kunz,et al.  Acoustic divergence in two cryptic Hipposideros species: a role for social selection? , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[157]  Gareth Jones Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species , 1997 .

[158]  H. Schnitzler,et al.  Doppler-shift compensation in insect-catching horseshoe bats , 1982, Naturwissenschaften.

[159]  P. Hulva,et al.  New mitochondrial lineages within the Pipistrellus pipistrellus complex from Mediterranean Europe , 2007 .

[160]  Feeding behaviour of the bats Nycteris grandis and Nycteris thebaica (Nycteridae) in captivity , 2009 .

[161]  H. Schnitzler,et al.  Echolocation behavior of the bat Vespertilio murinus reveals the border between the habitat types “edge” and “open space” , 2007, Behavioral Ecology and Sociobiology.

[162]  Karry A. Kazial,et al.  Female big brown bats, Eptesicus fuscus, recognize sex from a caller's echolocation signals , 2004, Animal Behaviour.

[163]  R. Barclay,et al.  Bats are not birds- a cautionary note on using echolocation calls to identify bats: a comment , 1999 .

[164]  D. Dechmann,et al.  A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals , 2010, Animal Behaviour.

[165]  Lasse Jakobsen,et al.  How the bat got its buzz , 2013, Biology Letters.

[166]  A. Collen The evolution of echolocation in bats: a comparative approach , 2012 .

[167]  M. Holderied,et al.  Echolocation range and wingbeat period match in aerial-hawking bats , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[168]  Christine V. Portfors,et al.  Compromises: sound frequencies used in echolocation by aerial-feeding bats , 1998 .

[169]  Thomas H. Kunz,et al.  ALTERNATION OF ECHOLOCATION CALLS IN 5 SPECIES OF AERIAL-FEEDING INSECTIVOROUS BATS FROM MALAYSIA , 2003 .

[170]  P. Faure,et al.  Variation in the use of Harmonics in the Calls of Laryngeally Echolocating Bats , 2011 .

[171]  H. Schnitzler,et al.  Echolocation by the barbastelle bat, Barbastella barbastellus , 2001, Journal of Comparative Physiology A.

[172]  M. Donoghue,et al.  A Molecular Phylogeny for Bats Illuminates Biogeography and the Fossil Record , 2005 .

[173]  Gareth Jones,et al.  Identification of twenty‐two bat species (Mammalia: Chiroptera) from Italy by analysis of time‐expanded recordings of echolocation calls , 2002 .

[174]  Jiang Feng,et al.  Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats , 2013, Proceedings of the National Academy of Sciences.

[175]  Paul A. Faure,et al.  Evolution of high duty cycle echolocation in bats , 2012, Journal of Experimental Biology.

[176]  W. O'Neill,et al.  The Bat Auditory Cortex , 1995 .

[177]  Raphaël Arlettaz,et al.  Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii , 2007, Journal of Experimental Biology.

[178]  Tinglei Jiang,et al.  Patterns and causes of geographic variation in bat echolocation pulses. , 2015, Integrative zoology.

[179]  J. Connell Diversity and the coevolution of competitors, or the ghost of competition past , 1980 .

[180]  M. B. Fenton,et al.  Questions, ideas and tools: lessons from bat echolocation , 2013, Animal Behaviour.

[181]  M. Brock Fenton,et al.  Bats: A World of Science and Mystery , 2015 .

[182]  Christian Dietz,et al.  A continental-scale tool for acoustic identification of European bats , 2012 .

[183]  G. Neuweiler,et al.  Foraging ecology and audition in echolocating bats. , 1989, Trends in ecology & evolution.

[184]  J. Ratcliffe,et al.  Body Size Predicts Echolocation Call Peak Frequency Better than Gape Height in Vespertilionid Bats , 2017, Scientific Reports.

[185]  B. J. Arthur,et al.  Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats , 2010, Proceedings of the Royal Society B: Biological Sciences.

[186]  J. Ratcliffe,et al.  To Scream or to Listen? Prey Detection and Discrimination in Animal-Eating Bats , 2016 .

[187]  G. Jones,et al.  Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely’s horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae) , 2001 .

[188]  David J. Hartley,et al.  The effect of atmospheric sound absorption on signal bandwidth and energy and some consequences for bat echolocation , 1989 .

[189]  D. Jacobs,et al.  Support for the allotonic frequency hypothesis in an insectivorous bat community , 2002, Oecologia.

[190]  Klaus-Gerhard Heller,et al.  Resource partitioning of sonar frequency bands in rhinolophoid bats , 1989, Oecologia.