Induction of decision trees from partially classified data using belief functions

A new tree-structured classifier based on the Dempster-Shafer theory of evidence is presented. The entropy measure classically used to assess the impurity of nodes in decision trees is replaced by an evidence-theoretic uncertainty measure taking into account not only the class proportions, but also the number of objects in each node. The resulting algorithm allows the processing of training data whose class membership is only partially specified in the form of a belief function. Experimental results with EEG data are presented.

[1]  Philippe Smets,et al.  What is Dempster-Shafer's model? , 1994 .

[2]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[3]  Thierry Denoeux,et al.  Analysis of evidence-theoretic decision rules for pattern classification , 1997, Pattern Recognit..

[4]  Kurt Weichselberger,et al.  A Methodology for Uncertainty in Knowledge-Based Systems , 1990, Lecture Notes in Computer Science.

[5]  Thierry Denœux,et al.  A k-nearest neighbor classification rule based on Dempster-Shafer Theory 1 , 1995 .

[6]  G. Klir,et al.  Uncertainty-based information: Elements of generalized information theory (studies in fuzziness and soft computing). , 1998 .

[7]  Cédric Richard,et al.  Data-driven design and complexity control of time-frequency detectors , 1999, Signal Process..

[8]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[9]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[10]  Jürg Kohlas,et al.  Handbook of Defeasible Reasoning and Uncertainty Management Systems , 2000 .

[11]  Philippe Smets,et al.  The Transferable Belief Model for Quantified Belief Representation , 1998 .

[12]  Philippe Smets,et al.  Belief Induced by the Partial Knowledge of the Probabilities , 1994, UAI.

[13]  George J. Klir,et al.  Measures of uncertainty in the Dempster-Shafer theory of evidence , 1994 .

[14]  Marte Skarstein Bjanger Vibration Analysis in Rotating Machinery Using Rough Set Theory and Rosetta 78070 Databehandling Prosjektarbeid , 1999 .

[15]  Thierry Denoeux,et al.  A k-nearest neighbor classification rule based on Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..

[16]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[17]  Thierry Denoeux,et al.  A neural network classifier based on Dempster-Shafer theory , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[18]  Cédric Richard Une méthodologie pour la détection à structure imposée : Applications au plan temps-fréquence , 1998 .

[19]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[20]  Khaled Mellouli,et al.  Decision trees using the belief function theory , 2000 .

[21]  Z. Pawlak,et al.  A Rough Set Perspective on Data andKnowledge ? , 1999 .

[22]  Thierry Denoeux,et al.  An evidence-theoretic k-NN rule with parameter optimization , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[23]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .