Calnexin controls TrkB cell surface transport and ER-phagy in mouse cerebral cortex development.

[1]  Teresa Klein,et al.  Plastin 3 rescues cell surface translocation and activation of TrkB in spinal muscular atrophy , 2023, The Journal of cell biology.

[2]  H. Nakatogawa,et al.  ER‐phagy: selective autophagy of the endoplasmic reticulum , 2022, EMBO reports.

[3]  M. Sauer,et al.  Dynamic remodeling of ribosomes and endoplasmic reticulum in axon terminals of motoneurons. , 2021, Journal of cell science.

[4]  P. Arvan,et al.  PGRMC1 acts as a size-selective cargo receptor to drive ER-phagic clearance of mutant prohormones , 2021, Nature Communications.

[5]  M. Molinari,et al.  N‐glycan processing selects ERAD‐resistant misfolded proteins for ER‐to‐lysosome‐associated degradation , 2021, The EMBO journal.

[6]  M. Molinari ER-phagy responses in yeast, plants, and mammalian cells and their crosstalk with UPR and ERAD. , 2021, Developmental cell.

[7]  M. Sauer,et al.  Induction of BDNF Expression in Layer II/III and Layer V Neurons of the Motor Cortex Is Essential for Motor Learning , 2020, The Journal of Neuroscience.

[8]  M. Sendtner,et al.  Regulation of TrkB cell surface expression—a mechanism for modulation of neuronal responsiveness to brain-derived neurotrophic factor , 2020, Cell and Tissue Research.

[9]  M. Molinari,et al.  A selective ER‐phagy exerts procollagen quality control via a Calnexin‐FAM134B complex , 2018, The EMBO journal.

[10]  A. Cuervo,et al.  Coordinate regulation of mutant NPC1 degradation by selective ER autophagy and MARCH6-dependent ERAD , 2018, Nature Communications.

[11]  M. Molinari,et al.  ER‐to‐lysosome‐associated degradation of proteasome‐resistant ATZ polymers occurs via receptor‐mediated vesicular transport , 2018, The EMBO journal.

[12]  S. Petri,et al.  Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease , 2017, Nature Communications.

[13]  S. Jablonka,et al.  BDNF/trkB Induction of Calcium Transients through Cav2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221) , 2017, Front. Mol. Neurosci..

[14]  E. Schuman,et al.  Unconventional secretory processing diversifies neuronal ion channel properties , 2016, eLife.

[15]  Álvaro Sebastián‐Serrano,et al.  Cux1 Enables Interhemispheric Connections of Layer II/III Neurons by Regulating Kv1-Dependent Firing , 2016, Neuron.

[16]  I. Katona,et al.  Regulation of endoplasmic reticulum turnover by selective autophagy , 2015, Nature.

[17]  M. Molinari,et al.  N-linked sugar-regulated protein folding and quality control in the ER. , 2015, Seminars in cell & developmental biology.

[18]  R. Campbell,et al.  Palmitoylation is the switch that assigns calnexin to quality control or ER Ca2+ signaling , 2013, Journal of Cell Science.

[19]  F. G. van der Goot,et al.  Calnexin controls the STAT3-mediated transcriptional response to EGF. , 2013, Molecular cell.

[20]  M. Sendtner,et al.  EGF transactivation of Trk receptors regulates the migration of newborn cortical neurons , 2013, Nature Neuroscience.

[21]  Kelley W. Moremen,et al.  Vertebrate protein glycosylation: diversity, synthesis and function , 2012, Nature Reviews Molecular Cell Biology.

[22]  M. Michalak,et al.  Enhanced Clathrin-Dependent Endocytosis in the Absence of Calnexin , 2011, PloS one.

[23]  P. H. Cameron,et al.  Calnexin phosphorylation: linking cytoplasmic signalling to endoplasmic reticulum lumenal functions. , 2010, Seminars in cell & developmental biology.

[24]  K. Krause,et al.  Calnexin Deficiency Leads to Dysmyelination* , 2010, The Journal of Biological Chemistry.

[25]  M. Chao,et al.  Trk activation in the secretory pathway promotes Golgi fragmentation , 2010, Molecular and Cellular Neuroscience.

[26]  P. H. Cameron,et al.  Calnexin Phosphorylation Attenuates the Release of Partially Misfolded α1-Antitrypsin to the Secretory Pathway* , 2009, The Journal of Biological Chemistry.

[27]  T. Simmen,et al.  The subcellular distribution of calnexin is mediated by PACS-2. , 2008, Molecular biology of the cell.

[28]  I. Sora,et al.  Dopamine D1 Receptor-induced Signaling through TrkB Receptors in Striatal Neurons* , 2008, Journal of Biological Chemistry.

[29]  D. Kaplan,et al.  Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development , 2007, Development.

[30]  M. Chao,et al.  A role for Fyn in Trk receptor transactivation by G-protein-coupled receptor signaling , 2006, Molecular and Cellular Neuroscience.

[31]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[32]  R. Hardie,et al.  Calnexin Is Essential for Rhodopsin Maturation, Ca2+ Regulation, and Photoreceptor Cell Survival , 2006, Neuron.

[33]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[34]  K. Unsicker,et al.  TrkB regulates neocortex formation through the Shc/PLCγ‐mediated control of neuronal migration , 2004, The EMBO journal.

[35]  Kanefusa Kato,et al.  Cleavage of calnexin caused by apoptotic stimuli: implication for the regulation of apoptosis. , 2004, Journal of biochemistry.

[36]  F. Lee,et al.  Transactivation of Trk Neurotrophin Receptors by G-Protein-Coupled Receptor Ligands Occurs on Intracellular Membranes , 2004, The Journal of Neuroscience.

[37]  A. Helenius,et al.  Roles of N-linked glycans in the endoplasmic reticulum. , 2004, Annual review of biochemistry.

[38]  G. Stamp,et al.  Early Postnatal Death and Motor Disorders in Mice Congenitally Deficient in Calnexin Expression , 2002, Molecular and Cellular Biology.

[39]  A. Lupas,et al.  Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis , 2001, The EMBO journal.

[40]  F. Lee,et al.  Activation of Trk neurotrophin receptors in the absence of neurotrophins , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[41]  H. Ohno,et al.  Cell Surface Expression of Calnexin, a Molecular Chaperone in the Endoplasmic Reticulum* , 2000, The Journal of Biological Chemistry.

[42]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[43]  H. Roderick,et al.  Cytosolic Phosphorylation of Calnexin Controls Intracellular Ca2+ Oscillations via an Interaction with Serca2b , 2000, The Journal of cell biology.

[44]  M. Lavail,et al.  Role of Neurotrophin Receptor TrkB in the Maturation of Rod Photoreceptors and Establishment of Synaptic Transmission to the Inner Retina , 1999, The Journal of Neuroscience.

[45]  J. Lindstrom,et al.  Inhibition of Glucose Trimming with Castanospermine Reduces Calnexin Association and Promotes Proteasome Degradation of the α-Subunit of the Nicotinic Acetylcholine Receptor* , 1998, The Journal of Biological Chemistry.

[46]  V. Katta,et al.  Extracellular domain of neurotrophin receptor trkB: disulfide structure, N-glycosylation sites, and ligand binding. , 1995, Archives of biochemistry and biophysics.

[47]  D. Vestweber,et al.  The integrin chains beta 1 and alpha 6 associate with the chaperone calnexin prior to integrin assembly. , 1994, The Journal of biological chemistry.

[48]  R. Spiro,et al.  Inhibition of glucose trimming by castanospermine results in rapid degradation of unassembled major histocompatibility complex class I molecules. , 1993, The Journal of biological chemistry.