Identification of nonclassical properties of light with multiplexing layouts.

In Sperling et al. [Phys. Rev. Lett. 118, 163602 (2017)], we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multiphoton states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data.

[1]  Christine Silberhorn,et al.  Detecting quantum light , 2007 .

[2]  Paul,et al.  Photon chopping: New way to measure the quantum state of light. , 1996, Physical review letters.

[3]  J. D. Franson,et al.  Photon-number resolution using time-multiplexed single-photon detectors , 2003, quant-ph/0305193.

[4]  G. Agarwal,et al.  Correlation measurements with on-off detectors , 2013, 1309.3058.

[5]  Christine Silberhorn,et al.  Probing the negative Wigner function of a pulsed single photon point by point. , 2010, Physical review letters.

[6]  James C. Gates,et al.  On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing , 2011 .

[7]  O. Haderka,et al.  Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion , 2016, Scientific Reports.

[8]  Animesh Datta,et al.  Tomography of photon-number resolving continuous-output detectors , 2015, 1502.07649.

[9]  A. Ilyin Generalized binomial distribution in photon statistics , 2014, 1406.2851.

[10]  L. Mandel,et al.  Photon-antibunching and sub-Poissonian photon statistics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[11]  M. Paris,et al.  Ancilla-assisted calibration of a measuring apparatus. , 2012, Physical review letters.

[12]  Marco Genovese,et al.  Experimental reconstruction of photon statistics without photon counting. , 2005, Physical review letters.

[13]  L. Mandel Non-Classical States of the Electromagnetic Field , 1986 .

[14]  Eric Lantz,et al.  Multi-imaging and Bayesian estimation for photon counting with EMCCDs , 2008 .

[15]  Christine Silberhorn,et al.  Fiber-assisted detection with photon number resolution. , 2003, Optics letters.

[16]  G. Agarwal,et al.  Operational definition of quantum correlations of light , 2016, 1605.06975.

[17]  Konrad Banaszek,et al.  High-fidelity spatially resolved multiphoton counting for quantum imaging applications. , 2014, Optics letters.

[18]  R. Collins,et al.  Single-photon generation and detection , 2009 .

[19]  B. Englert,et al.  Measuring quantum correlations using lossy photon-number-resolving detectors with saturation , 2012, 1210.8022.

[20]  Marco Barbieri,et al.  Direct observation of sub-binomial light , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[21]  Barry C Sanders,et al.  Complete Characterization of Quantum-Optical Processes , 2008, Science.

[22]  G. S. Agarwal,et al.  Quantum state engineering by click counting , 2014, 1403.1044.

[23]  Nicolas Gisin,et al.  Quantum communication , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[24]  Barry C Sanders,et al.  Direct observation of nonclassical photon statistics in parametric down-conversion. , 2004, Physical review letters.

[25]  R. Glauber,et al.  Correlation Functions for Coherent Fields , 1965 .

[26]  C Silberhorn,et al.  Accessing higher order correlations in quantum optical states by time multiplexing. , 2010, Physical review letters.

[27]  J. Shapiro The Quantum Theory of Optical Communications , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  Christine Silberhorn,et al.  Direct calibration of click-counting detectors , 2016, 1611.04779.

[29]  W. Vogel,et al.  Unbalanced Homodyne Correlation Measurements. , 2015, Physical review letters.

[30]  J. Sperling,et al.  Homodyne detection with on-off detector systems , 2015, 1508.03142.

[31]  S. Olivares,et al.  Measuring high-order photon-number correlations in experiments with multimode pulsed quantum states , 2011, 1109.0410.

[32]  I. Walmsley,et al.  Quantum Correlations from the Conditional Statistics of Incomplete Data. , 2016, Physical review letters.

[33]  J. Eisert,et al.  Recursive quantum detector tomography , 2012, 1207.3501.

[34]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[35]  A. Migdall,et al.  Reduced deadtime and higher rate photon-counting detection using a multiplexed detector array , 2006, quant-ph/0601102.

[36]  Brian J. Smith,et al.  Quantum state estimation with unknown measurements , 2013, 1306.6431.

[37]  Andreas Christ,et al.  Highly efficient single-pass source of pulsed single-mode twin beams of light. , 2011, Physical review letters.

[38]  S. Polyakov,et al.  Implementing a Multiplexed System of Detectors for Higher Photon Counting Rates , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Luis L. Sánchez-Soto,et al.  COMPLETE CHARACTERIZATION OF ARBITRARY QUANTUM MEASUREMENT PROCESSES , 1999 .

[40]  R. Filip,et al.  Hierarchy of feasible nonclassicality criteria for sources of photons , 2013 .

[41]  Girish S. Agarwal,et al.  CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS. I. MAPPING THEOREMS AND ORDERING OF FUNCTIONS OF NONCOMMUTING OPERATORS. , 1970 .

[42]  Ingmar Müller,et al.  Metrology of single-photon sources and detectors: a review , 2014 .

[43]  L. Mandel,et al.  Sub-Poissonian photon statistics in resonance fluorescence. , 1979, Optics letters.

[44]  Christian Kurtsiefer,et al.  Experimentally faking the violation of Bell's inequalities. , 2011, Physical review letters.

[45]  A. Fiore,et al.  Modified detector tomography technique applied to a superconducting multiphoton nanodetector. , 2012, Optics express.

[46]  C. Fabre,et al.  Detecting the spatial quantum uncertainty of bosonic systems , 2016, 1605.07813.

[47]  G. Agarwal,et al.  Sub-binomial light. , 2012, Physical review letters.

[48]  Jens Eisert,et al.  Tomography of quantum detectors , 2009 .

[49]  Eric Lantz,et al.  Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime. , 2008, Physical review letters.

[50]  W. Vogel,et al.  Nonclassicality of quantum states: a hierarchy of observable conditions. , 2002, Physical review letters.

[51]  James F. Dynes,et al.  Efficient and robust quantum random number generation by photon number detection , 2015 .

[52]  Sae Woo Nam,et al.  Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. , 2011, Optics express.

[53]  J. Rehacek,et al.  Multiple-photon resolving fiber-loop detector , 2003 .

[54]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[55]  Parity Detection in Quantum Optical Metrology Without Number Resolving Detectors , 2010, 1007.4176.

[56]  P. Kelley,et al.  Theory of Electromagnetic Field Measurement and Photoelectron Counting , 1964 .

[57]  Brian J. Smith,et al.  Mapping coherence in measurement via full quantum tomography of a hybrid optical detector , 2012, Nature Photonics.

[58]  Jan Peřina,et al.  Absolute detector calibration using twin beams. , 2012, Optics letters.

[59]  A. Einstein Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.

[60]  W. Vogel,et al.  Fake violations of the quantum Bell-parameter bound , 2010, 1004.3700.

[61]  Christine Silberhorn,et al.  An efficient integrated two-color source for heralded single photons , 2012, 1211.3960.

[62]  Agarwal,et al.  Nonclassical character of states exhibiting no squeezing or sub-Poissonian statistics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[63]  G. S. Agarwal,et al.  True photocounting statistics of multiple on-off detectors , 2012, 1202.5106.

[64]  Giacomo Mauro D'Ariano,et al.  Quantum calibration of measurement instrumentation. , 2004, Physical review letters.

[65]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[66]  C. Silberhorn,et al.  Uncovering Quantum Correlations with Time-Multiplexed Click Detection. , 2015, Physical review letters.

[67]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[68]  Samuel L. Braunstein,et al.  Detection devices in entanglement-based optical state preparation , 2001 .

[69]  Franco Nori,et al.  Testing nonclassicality in multimode fields: A unified derivation of classical inequalities , 2010, 1004.3182.

[70]  Carsten Rockstuhl,et al.  Sub-Poisson-binomial light , 2016, 1606.04826.

[71]  Werner Vogel,et al.  Harnessing click detectors for the genuine characterization of light states , 2016, Scientific Reports.

[72]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[73]  Christine Silberhorn,et al.  Single-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics. , 2015, Physical review letters.

[74]  Marco Genovese,et al.  Quantum characterization of superconducting photon counters , 2011, 1103.2991.

[75]  V. Jonker,et al.  TH' , 2019, Dictionary of Upriver Halkomelem.

[76]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[77]  Simon Gross,et al.  Laser written circuits for quantum photonics , 2015 .

[78]  F. Devaux,et al.  Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down conversion , 2012, 1204.0990.

[79]  M. Barbieri,et al.  Metrology with Unknown Detectors. , 2015, Physical review letters.