Energy barriers and hysteresis in martensitic phase transformations

Abstract We report results from a systematic program of alloy development in the system TiNiX, X = Cu, Pt, Pd, Au, to pursue certain special lattice parameters that have been identified previously with low hysteresis. We achieve λ 2 = 1 , where λ 2 is the middle eigenvalue of the transformation stretch matrix, for alloys with X = Pt, Pd, Au. In all cases there is a sharp drop in the graph of hysteresis vs. composition at the composition where λ 2 = 1 . When the size of the hysteresis is replotted vs. λ 2 we obtain a universal graph for these alloys. Motivated by these experimental results, we present a new theory for the size of the hysteresis based on the growth from a small scale of fully developed austenite martensite needles. The energy of the transition layer plays a critical role in this theory. Overall, the results point to a simple systematic method of achieving low hysteresis and a high degree of reversibility in transforming materials.

[1]  T Prakash G. Thamburaja,et al.  Polycrystalline shape-memory materials: effect of crystallographic texture , 2001 .

[2]  Tem Investigation of Microstructures in Low‐Hysteresis Ti50Ni50‐xPdx Alloys with Special Lattice Parameters , 2008 .

[3]  H. Kato,et al.  Cyclic stress–strain response of superelastic Cu–Al–Mn alloy single crystals , 1999 .

[4]  S. Allen,et al.  Micromagnetics and micromechanics of Ni-Mn-Ga actuation , 2003 .

[5]  G. Friesecke,et al.  A theorem on geometric rigidity and the derivation of nonlinear plate theory from three‐dimensional elasticity , 2002 .

[6]  K. Bhattacharya,et al.  A computational model of ferroelectric domains. Part II: grain boundaries and defect pinning , 2005 .

[7]  J. Ball,et al.  Hysteresis During Stress-Induced Variant Rearrangement , 1995 .

[8]  Wael Zaki,et al.  A 3D model of the cyclic thermomechanical behavior of shape memory alloys , 2007 .

[9]  D. Schryvers Microtwin sequences in thermoelastic NixAl100-x martensite studied by conventional and high-resolution transmission electron microscopy , 1993 .

[10]  Richard D. James,et al.  A Way to Search for Multiferroic Materials with “Unlikely” Combinations of Physical Properties , 2005 .

[11]  T. Shield,et al.  Microstructure in a Cubic to Orthorhombic Transition , 2000 .

[12]  Giuseppe Buttazzo,et al.  Calculus of Variations and Partial Differential Equations: Topics On Geometrical Evolution Problems And Degree Theory , 2000 .

[13]  K. Melton,et al.  Ni-Ti-Cu Shape Memory Alloys , 1990 .

[14]  Perry H Leo,et al.  Transient heat transfer effects on the pseudoelastic behavior of shape-memory wires , 1993 .

[15]  Shuichi Miyazaki,et al.  Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films , 1999 .

[16]  R. Kohn,et al.  Modeling of Branched Needle Microstructures at the Edge of a Martensite Laminate , 1995 .

[17]  J.H.N. van Vucht,et al.  Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition , 1970 .

[18]  Shore,et al.  Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations. , 1992, Physical review letters.

[19]  N. Matveeva,et al.  Effect of Hf on the structure of Ni-Ti martensitic alloys , 1997 .

[20]  J. Shaw,et al.  Thermomechanical aspects of NiTi , 1995 .

[21]  R. Kohn,et al.  Branching of twins near an austenite—twinned-martensite interface , 1992 .

[22]  T. W. Duerig,et al.  Engineering Aspects of Shape Memory Alloys , 1990 .

[23]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[24]  Kaushik Bhattacharya,et al.  A computational model of ferroelectric domains. Part I: model formulation and domain switching , 2005 .

[25]  H. Tobushi,et al.  Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads , 1995 .

[26]  Robert V. Kohn,et al.  Surface energy and microstructure in coherent phase transitions , 1994 .

[27]  N. Matveeva,et al.  MARTENSITIC TRANSFORMATIONS IN THE TiPd-TiNi SYSTEM , 1982 .

[28]  Ken Gall,et al.  Cyclic deformation mechanisms in precipitated NiTi shape memory alloys , 2002 .

[29]  D. McDowell,et al.  Cyclic thermomechanical behavior of a polycrystalline pseudoelastic shape memory alloy , 2002 .

[30]  M. Wuttig,et al.  Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width , 2006, Nature materials.

[31]  V. Novák,et al.  Investigation of twin boundary thickness and energy in CuAlNi shape memory alloy , 2007 .

[32]  F. Pérez-Reche,et al.  Training-induced criticality in martensites. , 2007, Physical review letters.

[33]  Ziad Moumni,et al.  Fatigue analysis of shape memory alloys: energy approach , 2005 .

[34]  Thomas Waitz,et al.  Size-dependent martensitic transformation path causing atomic-scale twinning of nanocrystalline NiTi shape memory alloys , 2005 .

[35]  Shuichi Miyazaki,et al.  Orientation dependence of β1 → β1′ stress-induced martensitic transformation in a Cu-AI-Ni alloy , 1988 .

[36]  Carsten Carstensen,et al.  Nonclassical Austenite-Martensite Interfaces , 1997 .

[37]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[38]  G. Bourbon,et al.  Thermodynamical model of cyclic behaviour of TiNi and CuZnAl shape memory alloys under isothermal undulated tensile tests , 1996 .

[39]  J. Mackenzie,et al.  The crystallography of martensite transformations II , 1954 .

[40]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[41]  J. Humbeeck,et al.  Effect of off-stoichiometry on the mobility of point-like defects and damping in binary Cu–Al martensites , 2006 .

[42]  Ellis Harold Dill Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity , 2006 .

[43]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[44]  D. Shilo,et al.  Modulus mapping of nanoscale closure variants in Ni–Mn–Ga , 2008 .

[45]  T. Shield Orientation dependence of the pseudoelastic behavior of single crystals of CuAlNi in tension , 1995 .

[46]  A. Planes,et al.  Hysteresis and avalanches in the site-diluted Ising model: comparison with experimental results in Cu-Al-Mn alloys , 2000 .

[47]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[48]  K. Bhattacharya,et al.  Investigation of twin-wall structure at the nanometre scale using atomic force microscopy , 2004, Nature materials.

[49]  K. Bhattacharya Microstructure of martensite : why it forms and how it gives rise to the shape-memory effect , 2003 .

[50]  Xiangyang Huang,et al.  Crystal structures and shape-memory behaviour of NiTi , 2003, Nature materials.